933 resultados para Bayesian hierarchical linear model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropomorphic model observers are mathe- matical algorithms which are applied to images with the ultimate goal of predicting human signal detection and classification accuracy across varieties of backgrounds, image acquisitions and display conditions. A limitation of current channelized model observers is their inability to handle irregularly-shaped signals, which are common in clinical images, without a high number of directional channels. Here, we derive a new linear model observer based on convolution channels which we refer to as the "Filtered Channel observer" (FCO), as an extension of the channelized Hotelling observer (CHO) and the nonprewhitening with an eye filter (NPWE) observer. In analogy to the CHO, this linear model observer can take the form of a single template with an external noise term. To compare with human observers, we tested signals with irregular and asymmetrical shapes spanning the size of lesions down to those of microcalfications in 4-AFC breast tomosynthesis detection tasks, with three different contrasts for each case. Whereas humans uniformly outperformed conventional CHOs, the FCO observer outperformed humans for every signal with only one exception. Additive internal noise in the models allowed us to degrade model performance and match human performance. We could not match all the human performances with a model with a single internal noise component for all signal shape, size and contrast conditions. This suggests that either the internal noise might vary across signals or that the model cannot entirely capture the human detection strategy. However, the FCO model offers an efficient way to apprehend human observer performance for a non-symmetric signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence-defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs-in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. We used data from 751 studies including 4,372,000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4.3% (95% credible interval 2.4-7.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28.5% due to the rise in prevalence, 39.7% due to population growth and ageing, and 31.8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. Wellcome Trust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. METHODS: We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m(2) [underweight], 18·5 kg/m(2) to <20 kg/m(2), 20 kg/m(2) to <25 kg/m(2), 25 kg/m(2) to <30 kg/m(2), 30 kg/m(2) to <35 kg/m(2), 35 kg/m(2) to <40 kg/m(2), ≥40 kg/m(2) [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. FINDINGS: We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m(2) (95% credible interval 21·3-22·1) in 1975 to 24·2 kg/m(2) (24·0-24·4) in 2014 in men, and from 22·1 kg/m(2) (21·7-22·5) in 1975 to 24·4 kg/m(2) (24·2-24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m(2) in central Africa and south Asia to 29·2 kg/m(2) (28·6-29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m(2) (21·4-22·3) in south Asia to 32·2 kg/m(2) (31·5-32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5-17·4) to 8·8% (7·4-10·3) in men and from 14·6% (11·6-17·9) to 9·7% (8·3-11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8-29·2) in men and 24·0% (18·9-29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4-4·1) in 1975 to 10·8% (9·7-12·0) in 2014 in men, and from 6·4% (5·1-7·8) to 14·9% (13·6-16·1) in women. 2·3% (2·0-2·7) of the world's men and 5·0% (4·4-5·6) of women were severely obese (ie, have BMI ≥35 kg/m(2)). Globally, prevalence of morbid obesity was 0·64% (0·46-0·86) in men and 1·6% (1·3-1·9) in women. INTERPRETATION: If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world's poorest regions, especially in south Asia. FUNDING: Wellcome Trust, Grand Challenges Canada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les pratiques relationnelles de soin (PRS) sont au cœur même des normes et valeurs professionnelles qui définissent la qualité de l’exercice infirmier, mais elles sont souvent compromises par un milieu de travail défavorable. La difficulté pour les infirmières à actualiser ces PRS qui s’inscrivent dans les interactions infirmière-patient par un ensemble de comportements de caring, constitue une menace à la qualité des soins, tout en créant d’importantes frustrations pour les infirmières. En mettant l’accent sur l’aspect relationnel du processus infirmier, cette recherche, abordée sous l'angle du caring, renvoie à une vision novatrice de la qualité des soins et de l'organisation des services en visant à expliquer l’impact du climat organisationnel sur le façonnement des PRS et la satisfaction professionnelle d’infirmières soignantes en milieu hospitalier. Cette étude prend appui sur une adaptation du Quality-Caring Model© de Duffy et Hoskins (2003) qui combine le modèle d’évaluation de la qualité de Donabedian (1980, 1992) et la théorie du Human Caring de Watson (1979, 1988). Un devis mixte de type explicatif séquentiel, combinant une méthode quantitative de type corrélationnel prédictif et une méthode qualitative de type étude de cas unique avec niveaux d’analyse imbriqués, a été privilégié. Pour la section quantitative auprès d’infirmières soignantes (n = 292), différentes échelles de mesure validées, de type Likert ont permis de mesurer les variables suivantes : le climat organisationnel (global et cinq dimensions composites) ; les PRS privilégiées ; les PRS actuelles ; l’écart entre les PRS privilégiées et actuelles ; la satisfaction professionnelle. Des analyses de régression linéaire hiérarchique ont permis de répondre aux six hypothèses du volet quantitatif. Pour le volet qualitatif, les données issues des sources documentaires, des commentaires recueillis dans les questionnaires et des entrevues effectuées auprès de différents acteurs (n = 15) ont été traités de manière systématique, par analyse de contenu, afin d’expliquer les liens entre les notions d’intérêts. L’intégration des inférences quantitatives et qualitatives s’est faite selon une approche de complémentarité. Nous retenons du volet quantitatif qu’une fois les variables de contrôle prises en compte, seule une dimension composite du climat organisationnel, soit les caractéristiques de la tâche, expliquent 5 % de la variance des PRS privilégiées. Le climat organisationnel global et ses dimensions composites relatives aux caractéristiques du rôle, de l’organisation, du supérieur et de l’équipe sont de puissants facteurs explicatifs des PRS actuelles (5 % à 11 % de la variance), de l’écart entre les PRS privilégiées et actuelles (4 % à 9 %) ainsi que de la satisfaction professionnelle (13 % à 30 %) des infirmières soignantes. De plus, il a été démontré, qu’au-delà de l’important impact du climat organisationnel global et des variables de contrôle, la fréquence des PRS contribue à augmenter la satisfaction professionnelle des infirmières (ß = 0,31 ; p < 0,001), alors que l’écart entre les PRS privilégiées et actuelles contribue à la diminuer (ß = - 0,30 ; p < 0,001) dans des proportions fort similaires (respectivement 7 % et 8 %). Le volet qualitatif a permis de mettre en relief quatre ordres de facteurs qui expliquent comment le climat organisationnel façonne les PRS et la satisfaction professionnelle des infirmières. Ces facteurs sont: 1) l’intensité de la charge de travail; 2) l’approche d’équipe et la perception du rôle infirmier ; 3) la perception du supérieur et de l’organisation; 4) certaines caractéristiques propres aux patients/familles et à l’infirmière. L’analyse de ces facteurs a révélé d’intéressantes interactions dynamiques entre quatre des cinq dimensions composites du climat, suggérant ainsi qu’il soit possible d’influencer une dimension en agissant sur une autre. L’intégration des inférences quantitatives et qualitatives rend compte de l’impact prépondérant des caractéristiques du rôle sur la réalisation des PRS et la satisfaction professionnelle des infirmières, tout en suggérant d’adopter une approche systémique qui mise sur de multiples facteurs dans la mise en oeuvre d’interventions visant l’amélioration des environnements de travail infirmier en milieu hospitalier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le but de cette étude est d’examiner les liens prédictifs entre les comportements d’agressivité proactive à l’enfance et la délinquance à l’adolescence, ainsi que le rôle potentiellement modérateur des normes prosociales du groupe-classe et du rejet par le groupe de pairs. Spécifiquement, les liens suivants seront examinés : 1) le lien principal positif entre l’agressivité proactive à l’enfance et la délinquance à l’adolescence, 2) l’effet modérateur (i.e., protecteur) des normes prosociales au sein du groupe-classe sur le lien entre l’agressivité proactive et la délinquance et 3) l’effet modérateur de second niveau du rejet par les pairs eu égard à l’effet modérateur de premier niveau des normes prosociales du groupe-classe. Deux modèles théoriques seront utilisés afin d’appuyer le choix des hypothèses et offrir un cadre conceptuel en vue de l’interprétation des résultats: Le modèle du groupe de référence et le modèle de la similarité personne-groupe. Les données proviennent d’un échantillon composé de 327 enfants ayant été évalués à 6 reprises, de l’âge de 10 ans (4e année primaire) à 15 ans (3e secondaire). La délinquance fut mesurée à l’aide de données auto-rapportées par les participants. Les normes prosociales du groupe-classe furent basées sur les évaluations moyennes faites par les enseignants des comportements prosociaux des élèves de leur classe. Le rejet par les pairs fut mesuré à l’aide d’évaluations sociométriques au sein des groupes-classes. Des modèles de régression linéaire hiérarchique ont été utilisés. Les résultats montrent un lien positif entre l’agressivité proactive à l’enfance et la délinquance à l’adolescence. Malgré l’obtention d’un coefficient d’interaction marginal, les résultats indiquent que les normes prosociales modèrent, mais à la hausse, le lien entre l’agressivité et la délinquance. L’effet modérateur du rejet par les pairs n’apparaît pas comme étant significatif. Ces résultats seront discutés afin de mieux comprendre le lien entre l’agressivité et les éléments du contexte social dans lequel l’enfant évolue, ainsi que leur implication au niveau de la prévention des problèmes d’agressivité et de la délinquance en milieu scolaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen: Este trabajo estudia los resultados en matemáticas y lenguaje de 32000 estudiantes en la prueba saber 11 del 2008, de la ciudad de Bogotá. Este análisis reconoce que los individuos se encuentran contenidos en barrios y colegios, pero no todos los individuos del mismo barrio asisten a la misma escuela y viceversa. Con el fin de modelar esta estructura de datos se utilizan varios modelos econométricos, incluyendo una regresión jerárquica multinivel de efectos cruzados. Nuestro objetivo central es identificar en qué medida y que condiciones del barrio y del colegio se correlacionan con los resultados educacionales de la población objetivo y cuáles características de los barrios y de los colegios están más asociadas al resultado en las pruebas. Usamos datos de la prueba saber 11, del censo de colegios c600, del censo poblacional del 2005 y de la policía metropolitana de Bogotá. Nuestras estimaciones muestran que tanto el barrio como el colegio están correlacionados con los resultados en las pruebas; pero el efecto del colegio parece ser mucho más fuerte que el del barrio. Las características del colegio que están más asociadas con el resultado en las pruebas son la educación de los profesores, la jornada, el valor de la pensión, y el contexto socio económico del colegio. Las características de los barrios más asociadas con el resultado en las pruebas son, la presencia de universitarios en la UPZ, un clúster de altos niveles de educación y nivel de crimen en el barrio que se correlaciona negativamente. Los resultados anteriores fueron hallados teniendo en cuenta controles familiares y personales.