176 resultados para Bade-Wurtemberg


Relevância:

10.00% 10.00%

Publicador:

Resumo:

No more published.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Editor: 1836- Alexander Cosmar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abschluss [von] M. Bernstein. -- Der mutige Revierförster [von] O. J. Bierbaum. -- Die Ehrenschuld [von] O. Blumenthal. -- Im Bade [von] M. G. Conrad. -- Der Vergnügungsreisende [von] K. Ettlinger. -- Der Aufsatz [von] A. M. Frey. -- Lipp in der Höll' [von] R. Greinz. -- Ehrenhandel [von] H. Mann. --Izzi Pizzi [von] G. Meyrink. -- Die Amme [von] A. De Nora. -- Lucille [von] R. Roda. -- Die Cousine aus Bḧmen [von] P. Sirius. -- Die verteufelte Stute [von] E. von Wolzogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top Row: Harold Saunders, coach Carl Lundgren, Arthur Karpus, Peter Van Boven, student mngr. William C. Bade, Frank Gariepy, Ath . Dir. Philip Bartelme, William Kitchgessner

Middle Row: Edward Ruzicka, James Newell, Kenneth Knode, Vernon Parks, Erick Langenhan, Gerald Froemke, Nicholas Scheidler

Front Row: Arthur Weadock, Edward Mraz, John Smith, John Perrin, Lowell Genebach

Relevância:

10.00% 10.00%

Publicador:

Resumo:

v.1. Algeria-Turkey.--v.2. United States--Wurtemberg. International convention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.