891 resultados para BREAST NEOPLASM
Resumo:
Utilising archival human breast cancer biopsy material we examined the stromal/epithelial interactions of several matrix metalloproteinases (MMPs) using in situ-RT-PCR (IS-RT-PCR). In breast cancer, the stromal/epithelial interactions that occur, and the site of production of these proteases, are central to understanding their role in invasive and metastatic processes. We examined MT1-MMP (MMP-14, membrane type-1-MMP), MMP-1 (interstitial collagenase) and MMP-3 (stromelysin-1) for their localisation profile in progressive breast cancer biopsy material (poorly differentiated invasive breast carcinoma (PDIBC), invasive breast carcinomas (IBC) and lymph node metastases (LNM)). Expression of MT1-MMP, MMP-1 and MMP-3 was observed in both the tumour epithelial and surrounding stromal cells in most tissue sections examined. MT1-MMP expression was predominantly localised to the tumour component in the pre-invasive lesions. MMP-1 gene expression was relatively well distributed between both tissue compartments, while MMP-3 demonstrated highest expression levels in the stromal tissue surrounding the epithelial tumour cells. The results demonstrate the ability to distinguish compartmental gene expression profiles using IS-RT-PCR. Further, we suggest a role for MT1-MMP in early tumour progression, expression of MMP-1 during metastasis and focal expression pattern of MMP-3 in areas of expansion. These expression profiles may provide markers for early breast cancer diagnoses and present potential therapeutic targets.
Resumo:
Our laboratory has previously found that anti-mitogenic nuclear receptor mRNA is elevated in late stage tumours and this study was performed to scrutinize the possibility of cancer-stroma crosstalk using hormone signaling in these tissues. RNA levels in stromal tissue were examined for the estrogen α, estrogen β, androgen, progesterone and glucocorticoid nuclear receptors by a semi-quantitative PCR. Significant differences in expression between the cancer stroma and control tissue were seen, analyzing for both cancer grade and estrogen receptor status. Stroma and control tissue were significantly different for the progesterone and glucocorticoid nuclear receptors (p = 5.908 × 10−7 and 2.761 × 10−5, respectively). Glucocorticoid receptor also showed a significant increase to mRNA levels in the stroma of estrogen receptor negative tumours (p = 5.85 × 10−5). By contrast, the estrogen receptors α and β, those most closely associated with breast tissue growth, showed no significant change in mRNA (p = 0.372 and 0.655, respectively). Androgen receptor mRNA also remained unaffected (p = 0.174).
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.
Resumo:
The development of breast cancer is a complex process that involves multiple genes at many stages, from initial cell cycle dysregulation to disease progression. To identify genetic variations that influence this process, we conducted a large-scale association study using a collection of German cases and controls and >25,000 SNPs located within 16,000 genes. One of the loci identified was located on chromosome 11q13 [odds ratio (OR)=1.85, P=0.017]. The initial association was subsequently tested in two independent breast cancer collections. In both sample sets, the frequency of the susceptibility allele was increased in the cases (OR=1.6, P=0.01). The susceptibility allele was also associated with an increase in cancer family history (P=0.1). Fine mapping showed that the region of association extends approximately 300 kb and spans several genes, including the gene encoding the nuclear mitotic apparatus protein (NuMA). A nonsynonymous SNP (A794G) in NuMA was identified that showed a stronger association with breast cancer risk than the initial marker SNP (OR=2.8, P=0.005 initial sample; OR=2.1, P=0.002 combined). NuMA is a cell cycle-related protein essential for normal mitosis that is degraded in early apoptosis. NuMA-retinoic acid receptor alpha fusion proteins have been described in acute promyelocytic leukemia. Although the potential functional relevance of the A794G variation requires further biological validation, we conclude that variations in the NuMA gene are likely responsible for the observed increased breast cancer risk.
Resumo:
Background Several studies have identified rare genetic variations responsible for many cases of familial breast cancer but their contribution to total breast cancer incidence is relatively small. More common genetic variations with low penetrance have been postulated to account for a higher proportion of the population risk of breast cancer. Methods and Results In an effort to identify genes that influence non-familial breast cancer risk, we tested over 25,000 single nucleotide polymorphisms (SNPs) located within approximately 14,000 genes in a large-scale case-control study in 254 German women with breast cancer and 268 age-matched women without malignant disease. We identified a marker on chromosome 14q24.3-q31.1 that was marginally associated with breast cancer status (OR = 1.5, P = 0.07). Genotypes for this SNP were also significantly associated with indicators of breast cancer severity, including presence of lymph node metastases ( P = 0.006) and earlier age of onset ( P = 0.01). The association with breast cancer status was replicated in two independent samples (OR = 1.35, P = 0.05). High-density association fine mapping showed that the association spanned about 80 kb of the zinc-finger gene DPF3 (also known as CERD4 ). One SNP in intron 1 was found to be more strongly associated with breast cancer status in all three sample collections (OR = 1.6, P = 0.003) as well as with increased lymph node metastases ( P = 0.01) and tumor size ( P = 0.01). Conclusion Polymorphisms in the 5' region of DPF3 were associated with increased risk of breast cancer development, lymph node metastases, age of onset, and tumor size in women of European ancestry. This large-scale association study suggests that genetic variation in DPF3 contributes to breast cancer susceptibility and severity.
Resumo:
We conducted a large-scale association study to identify genes that influence nonfamilial breast cancer risk using a collection of German cases and matched controls and >25,000 single nucleotide polymorphisms located within 16,000 genes. One of the candidate loci identified was located on chromosome 19p13.2 [odds ratio (OR) = 1.5, P = 0.001]. The effect was substantially stronger in the subset of cases with reported family history of breast cancer (OR = 3.4, P = 0.001). The finding was subsequently replicated in two independent collections (combined OR = 1.4, P < 0.001) and was also associated with predisposition to prostate cancer in an independent sample set of prostate cancer cases and matched controls (OR = 1.4, P = 0.002). High-density single nucleotide polymorphism mapping showed that the extent of association spans 20 kb and includes the intercellular adhesion molecule genes ICAM1, ICAM4, and ICAM5. Although genetic variants in ICAM5 showed the strongest association with disease status, ICAM1 is expressed at highest levels in normal and tumor breast tissue. A variant in ICAM5 was also associated with disease progression and prognosis. Because ICAMs are suitable targets for antibodies and small molecules, these findings may not only provide diagnostic and prognostic markers but also new therapeutic opportunities in breast and prostate cancer.
Resumo:
Background Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.
Resumo:
To examine matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) mRNA levels in archival breast cancer biopsies, we employed microdissection to separate tumour tissue from the surrounding breast tissue, or stroma and RT-PCR to determine gross qualitative and small quantitative differences in the patterns of expression. In this study, a significant correlation (p < 0.05, by Mann-Whitney U analysis) between TIMP-2 expression and lymph node involvement was identified, while MMP-11 and TIMP-1 expression patterning also significantly (p < 0.05) differed between those tumours showing calcification and those that did not. When compared by Spearmans’ ρ correlation analysis, a significant association (p < 0.05, ρ = 0.404) was identified in the pattern of MMP-2 and MMP-9 gene expression. In this study, the use of microdissection and a systematic strategy of RT-PCR analysis have allowed us to investigate localized MMP and MMP inhibitor expression within breast tumours. We have identified patterns of gene expression that may further reveal aspects of breast carcinogenesis, and a robust method for examining changes in clinically important genes using archival biopsies and across stroma-tumour boundaries.
Resumo:
To examine gene-expression patterning in late-stage breast cancer biopsies, we used a microdissection technique to separate tumor from the surrounding breast tissue or stroma. A DD-PCR protocol was then used to amplify expressed products, which were resolved using PAGE and used as probe to hybridize with representative human arrays and cDNA libraries. The probe derived from the tumor–stroma comparison was hybridized with a gene array and an arrayed cDNA library derived from a GCT of bone; 21 known genes or expressed sequence tags were detected, of which 17 showed differential expression. These included factors associated with epithelial to mesenchymal transition (vimentin), the cargo selection protein (TIP47) and the signal transducer and activator of transcription (STAT3). Northern blot analysis was used to confirm those genes also expressed by representative breast cancer cell lines. Notably, 6 genes of unknown function were restricted to tumor while the majority of stroma-associated genes were known. When applied to transformed breast cancer cell lines (MDA-MB-435 and T47D) that are known to have different metastatic potential, DD array analysis revealed a further 20 genes; 17 of these genes showed differential expression. Use of microdissection and the DD-PCR array protocol allowed us to identify factors whose localized expression within the breast may play a role in abnormal breast development or breast carcinogenesis.
Resumo:
Nuclear factor kappa-beta (NF-kappaB) is a transcription factor responsible for modulating the expression of many genes involved in cell proliferation, differentiation, apoptosis and metastasis. NF-kappaB interacts with IkappaB inhibitory proteins to regulate gene expression. This study investigated common variants within the genes coding for NF-kappaB and IkappaB, NFKB1 and NFKBIA, for involvement in sporadic breast cancer. Genotypes were determined in a population of breast cancer affected individuals and age-matched controls. Results do not support an involvement of the tested NFKB1 and NFKBIA polymorphisms in susceptibility to sporadic breast cancer, in the tested Caucasian population.
Resumo:
The presence of somatostatin receptors (SSTR1-5) in tumour cells indicates a potential for somatostatin to bind and suppress growth, as well as allowing for therapeutic treatment with somatostatin analogues. The genes for SSTR1 and SSTR2 have been shown to contain dinucleotide repeat polymorphisms. We have performed association studies on breast cancer and solar keratosis populations to determine whether these genes play a role in the development of these conditions. Results showed that there was no significant difference between SSTR1 and SSTR2 polymorphism frequencies in the tested breast cancer population (P = 0.59 and P = 0.54, respectively) nor the solar keratosis population (P = 0.10 and P = 0.883, respectively) as compared to unaffected populations. Hence, these studies do not support a role for these receptor genes in either breast cancer or solar keratosis lesions.
Resumo:
We have utilized a cross-sectional association approach to investigate sporadic breast cancer. Polymorphisms in 2 candidate genes, ESRalpha and GRL, were examined in an unrelated breast cancer-affected and age-matched control population. Several polymorphic regions within the ESRalpha gene have been identified, and some alleles of these polymorphisms have been found to occur at increased levels in breast-cancer patients. Additionally, variations in GRL have the potential to disrupt cell transcription and may be associated with cancer formation. We analyzed 3 polymorphisms, from codons 10 (TCT to TCC), 325 (CCC to CCG) and 594 (ACA to ACG) of ESRalpha, and a highly polymorphic dinucleotide repeat, D5S207, located within 200 kb of the GRL. When allelic frequencies of the codon 594 (exon 8) ESR polymorphism were compared between affected and unaffected populations, a significant difference was observed (p = 0.005). Results from the D5S207 dinucleotide repeat located near GRL also indicated a significant difference between the tested case and control populations (p = 0.001). Allelic frequencies of the codon 10 and codon 325 ESR polymorphisms were not significantly different between populations (p = 0.152 and 0.181, respectively). Our results indicate that specific alleles of the ESR gene (alpha subtype) and a marker for the GRL gene locus are associated with sporadic breast-cancer development in the tested Caucasian population and justify further investigation of the role of these and other nuclear steroid receptors in the etiology of breast cancer.
Resumo:
Background Certain genes from the glutathione S-transferase superfamily have been associated with several cancer types. It was the objective of this study to determine whether alleles of the glutathione S-transferase zeta 1 (GSTZ1) gene are associated with the development of sporadic breast cancer. Methods DNA samples obtained from a Caucasian population affected by breast cancer and a control population, matched for age and ethnicity, were genotyped for a polymorphism of the GSTZ1 gene. After PCR, alleles were identified by restriction enzyme digestion and results analysed by chi-square and CLUMP analysis. Results Chi-squared analysis gave a χ2 value of 4.77 (three degrees of freedom) with P = 0.19, and CLUMP analysis gave a T1 value of 9.02 with P = 0.45 for genotype frequencies and a T1 value of 4.77 with P = 0.19 for allele frequencies. Conclusion Statistical analysis indicates that there is no association of the GSTZ1 variant and hence the gene does not appear to play a significant role in the development of sporadic breast cancer.
Resumo:
The glutathione S-transferase (GST) family of enzymes function in the body to detoxify carcinogenic compounds. Several genes that code for these enzymes are polymorphic, with particular genotypes previously shown to confer an increased cancer risk. In this study, we investigated the role of three GST genes (GSTM1, GSTP1 and GSTT1) in the development of sporadic breast cancer. Genotypes were determined in 129 breast cancer affected and 129 age and sex matched control individuals. Results did not support an involvement of these specific GST gene polymorphisms, either independently or in combination, in susceptibility to sporadic breast cancer in the tested Australian Caucasian population.