950 resultados para BLUE-GREEN-ALGAE
Resumo:
Allophycocyanin (A-PC) is the main core component of phycobilisome found in blue-green algae. The apo-allophycocyanin and its subunits were expressed in Escherichia coli and their antioxidant properties were evaluated using deoxyribose assay. The result showed that both recombinant allophycocyanin fused with maltose binding protein (MBP) tag and 6 x His-tag and their alpha or beta subunits can scavenge hydroxyl radicals successfully, and the separated g or beta subunits had a higher inhibition effect on hydroxyl radicals than that when they combined together. The scavenging effects increased with the increasing concentration. These results clearly suggested that apo-allophycocyanin is involved in the antioxidant and radical scavenging activity of phycocyanin, and the antioxidant activity may be partially responsible to the anti-tumor effect of the recombinant allophycocyanin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Xuanlong-type Hematite Deposits, distributed in Xuanhua and Longguang area in Hebei province and hosted in the Changchengian Chuanlinggou Formation of Mesoproterozoic, is an oldest depositional iron deposit characterized by oolitic and stromatolitic hematite and siderite. This thesis made an systematic study of its sedimentary, sedimentology, geochemistry, mineralogy and sequence stratigraphy. Based on above, the mechanism and background of biomineralization are discussed. There are four types of hematite ores including stromatolite, algal oolite, algal pisolite and oncolite. Based on detailed study on ore texture, the authors think both algal oolite and algal pisolite ores are organic texture ores, and related to the role of microorganisms. The process of blue-green algae and bacteria in the Xuanlong basin absorbing, adsorbing and sticking iron to build up stromatolite is the formation process of Xuanlong-type hematite deposit. Researches on ore-bearing series and ore geochemistry show that the enrichment of elements is closely related to the microorganism activities. Fe_2O_3 is enriched in dark laminations of stromatolite with much organic matter and SiO_2 in light laminations with detrital matters. The trace elements, especially biogenic elements, including V, P, Mo are enriched in ores but relatively low in country rocks. The paper also demonstrates on the sequence stratigraphy of hematite deposits and five sequences and twelve systems are divided. The characteristics of sequence stratigraphy show that the deposit-forming location has obviously selectivity and always exists under a transgressive setting. The oxygen isotope in hematite is about -2.2~5.7‰, which is similar to that of Hamlys iron formation of Australia but more negative than that of volcanic or hydrothermal iron deposits characterized by high positive values. The calculation by the result of oxygen isotope analysis shows that the temperature of ancient sea water was 48.53℃. The negative value of carbon isotope from siderite indicates its biogenic carbon source. Meanwhile, the occurrence of seismite in the ore-beds, which indicates the formation of hematite deposits is associated with frequent shock caused by structural movement such as distal volcano or ocean-bottom earthquake etc, show the occurrence of hematite deposits is eventual, not gradual. In shorts, Xuanlong-type hematite deposits were the result of interaction among geological setting of semi-isolated Xuanglong basin, favorable hot and humid climate condition, abundant iron source, microorganism such as algae and bateria as well as the fluctuation of the sea level.
Resumo:
Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate power from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 minutes or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 minutes) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.
Resumo:
The present study was undertaken to observe the phytoplankton (distones,dinoflageliates,and blue green algae) blooms occurring along the south west coast of India at various seasons from February 1982 to august 1984.The centers selected for collection and observation were off Quilon, off Alleppey ,off Calicut. A total number of 25 phytoplankton blooms were studied. Characterisation of phytoplankton blooms include observing the cell counts from the day of its appearance to its day of disappearance. The appearance ,duration and locality of the blooms were also noted
Resumo:
Cyanobacteria (blue-green algae) blooms in water bodies present serious public health issues with attendant economic and ecological impacts. Llyn Tegid (Lake Bala) is an important conservation and amenity asset within Snowdonia National Park, Wales which since the mid-1990s has experienced multiple toxic cyanobacteria blooms threatening the ecology and tourism-dependent local economy. Multiple working hypotheses explain the emergence of this problem, including climate change, land management linked to increased nutrient flux, hydromorphological alterations or changing trophic structure - any of which may operate individually or cumulatively to impair lake function. This paper reports the findings of a sedimentfingerprinting study using dated lake cores to explore the linkages between catchment and lake management practices and the emergence of the algal blooms problem. Since 1900 AD lake bed sedimentation rates have varied from 0.06 to 1.07 g cm−2 yr−1, with a pronounced acceleration since the early 1980s. Geochemical analysis revealed increases in the concentrations of total phosphorus (TP), calcium and heavy metals such as zinc and lead consistent with eutrophication and a rising pollution burden, particularly since the late 1970s. An uncertainty-inclusive sedimentfingerprinting approach was used to apportion the relative fluxes from the major catchment land cover types of improved pasture, rough grazing, forestry and channel banks. This showed improved pasture and channel banks are the dominant diffuse sources of sediment in the catchment, though forestry sources were important historically. Conversion of rough grazing to improved grassland, coupled with intensified land management and year-round livestock grazing, is concluded to provide the principal source of rising TP levels. Lake Habitat Survey and particle size analysis of lake cores demonstrate the hydromorphological impact of the River Dee Regulation Scheme, which controls water level and periodically diverts flow into Llyn Tegid from the adjacent Afon Tryweryn catchment. This hydromorphological impact has also been most pronounced since the late 1970s. It is concluded that an integrated approach combining land management to reduce agricultural runoff allied to improved water level regulation enabling recovery of littoral macrophytes offers the greatest chance halting the on-going cyanobacteria issue in Llyn Tegid.
Resumo:
Patterns in the spatial and temporal composition, dominance and abundance of the phytoplankton community of the Jurumirim Reservoir (Brazil) were studied during one year at ten different sampling stations. The main phytoplankton associations were characterized by diatoms and blue-green algae, in distinctive patterns of dominance. The main species were Microcystis aeruginosa Kuetz, Anabaena circinalis Rabenhorst, A. spiroides Kleb., A. solitaria Kleb., Aulacoseira cf. italica Grunow and A. granulata (Ehr.) Simon. A high growth of Aulacoseira was observed in the upstream zones of the reservoir in spring, at the beginning of the seasonal rainy period. This growth was a response to increased flow rates and input of fresh nutrients by the main feeder rivers. A high concentration of blue-green algae, especially Anabaena circinalis and A. spiroides, was observed in winter (dry season) in the lacustrine part of the reservoir, towards the dam. These algae benefitted from the longer water retention times and greater internal circulation of nutrients in the absence of a thermocline at this time of the year. Among the Cyanophyceae, there was an alternation between M. aeruginosa, more abundant in summer, and Anabaena, dominant in autumn and winter. A conspicuous growth of Anabaena occurred in a diverticle of the reservoir, sheltered from the main advective processes that predominate in the central channel. Higher phytoplankton diversity was associated with the contact zone between riverine and lacustrine systems.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
In extensive animal husbandry, natural or artificial ponds allow direct access of cattle to water but result in degradation of water quality and in increased health risks. Under such circumstances eutrophication occurs and consequently algal bloom, among them toxigenic cyanobacteria. The present study aimed to report the occurrence of cyanobacteria in the drinking water of cattle and to describe their physical and chemical parameters, as pH, temperature and dissolved oxygen. Nineteen samples of natural ponds or water troughs formed predominantly as result of rainfall from six farms located in the Southeast and Midwest regions of Brazil were analyzed for the presence of cyanobacteria, and pH, temperature and dissolved oxygen was measured. Microcystis and/or Merismopedia were detected in two ponds; one of them was covered with intense flowering. The values of pH, temperature and dissolved oxygen in 19 collections were pH 7.2-9.7, 31-34ºC and 7.8-30mg/l respectively. Also non-pathogenic algae of several genera were detected besides the occurrence or not of cianogenics. Under these conditions, the common practices of drinking water supply for extensively raised cattle and the possibilities of eutrophication and cyanobacterial growth bring potential risks for animal health.
Resumo:
Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.
Resumo:
In the present investigation we studied the feeding habits of the fishes associated with aquatic macrophytes in the Rosana Reservoir, southeastern Brazil. Twenty fish species were collected during four field trips, regularly distributed across the dry and wet seasons. Focal snorkeling observations of the fishes were made over a total of six hours. Nine species were present in abundances of more than 1% and, therefore, had their feeding habits analyzed. Hemigrammus marginatus, Roeboides paranensis, Hyphessobrycon eques, Astyanax altiparanae, Serrasalmus spilopleura, and Bryconamericus stramineus were predominantly invertivores, with predominance of aquatic insects (Diptera, Ephemeroptera, and Trichoptera immatures) among their food items. The predominantly algivores were Apareiodon affinis, Serrapinnus notomelas, and Satanoperca pappaterra, with high frequency of filamentous blue-green algae, diatoms, clorophyts, and periderm. The different microhabitat exploitation plus diet composition suggests partitioning of resources and absence of food competition among the most representative fish species in the studied community, indicating the importance of the naturalistic approach to fish ecology studies.
Resumo:
The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Cyanobacteria are widely distributed in the environment and may be an effective and economic alternative for removing dyes from textile industry effluents. The present work investigated the potential of six cyanobacterial strains in decolorizing eleven types of textile dyes. The maximum absorbance of each dye was verified using a spectrophotometer. Mass spectrometry was used to verify the removal and possible degradation of dyes by the cyanobacteria. The results showed that all of the evaluated cyanobacteria were able to remove indigo, palanil yellow, indanthrene yellow, indanthrene blue, dispersol blue, indanthrene red and dispersol red by more than 50%. The Brazilian isolate Phormidium sp. CENA135 was able to decolorize and completely remove indigo blue BANN 30. This study confirmed the capacity of cyanobacteria to decolorize and possibly to structurally degrade different textile dyes, suggesting the possibility of their application in bioremediation studies.
Resumo:
This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, June 4, 1971. Since most of the papers will be published elsewhere, only very brief papers are included here. Moreover, several of the projects are still in progress at this time. Request for additional information on projects conducted at the University of Nebraska should be directed to Dr. Peter J. Reilly and for Kansas State University to Dr. L. E. Erickson. ContentsChao, Chih-Cheng, University of Nebraska, "Symbiotic Growth of Actobacter suboxydans and Saccharomyces carlsbergensis in a Chemostat" S.Y. Chiu, Kansas State University, "Model Identification in Mixed Populations Using Continuous Culture Data" Shinji Goto, University of Nebraska, "Symbiotic Growth of Bacteria and Blue Green Algae in a Chemostat" I.C. Kao, Kansas State University, "ATP as a Parameter of Mixed Culture Interaction" Indravadan R. Kothari, University of Nebraska, "Growth of Single Cells of Schizocaccharomyces pombe under Nutrient Limitation" G.C.Y. Chu, Kansas State University, "Experimental Optimization of Biological Waste Treatment Processes" Mark Young, University of Nebraska, "Aerobic Fermentation of Paunch Liquor" P.S. Shah, Kansas State University, "Optimal Control of Growth Processes"
Resumo:
Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N–22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380–730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907–2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase from ca. 1980 ± 2 onwards. We demonstrate that PC2 (24.4%, Chl-a-related pigments) is not affected by the eutrophication signal, but instead is sensitive to spring (MAM) temperature (r = 0.63, pcorr < 0.05, RMSEP = 0.56 °C; 5-yr filtered). Limnological monitoring data (2011–2013) support this finding. We also demonstrate that scanning visible reflectance spectroscopy (VIS-RS) data can be calibrated to HPLC-measured chloropigment data and be used to infer concentrations of sedimentary Chl-a derivatives {pheophytin a + pyropheophytin a}. This offers the possibility for very high-resolution (multi)millennial-long paleoenvironmental reconstructions.