953 resultados para BIPHASIC CATALYSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The occurrence of multinucleated giant cells (MNGCs) on bone substitute materials has been recognized for a long time. However, there have been no studies linking material characteristics with morphology of the MNGCs. The aim was to analyze the qualitative differences of MNGCs on two commercially available calcium phosphate bone substitute materials retrieved from bone defects. MATERIAL AND METHODS Six defects were prepared bilaterally in the mandibular body of three mini pigs. The defects were randomly grafted with either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP). After a healing period of four weeks, bone blocks were embedded in LR White resin. Three consecutive sections per defect were analyzed as follows: two with light microscopy using toluidine blue and tartrate-resistant acid phosphatase (TRAP) staining and one with transmission electron microscopy. RESULTS Multinucleated giant cells appeared on both biomaterials. On BCP, MNGCs had a flat morphology and were not observed in resorption lacunae. On DBBM, the MNGCs appeared more round and were often found in shallow concavities. MNGCs on both biomaterials demonstrated a varying degree of TRAP staining, with a tendency toward higher staining intensity of MNGCs on BCP. At the ultrastructural level, signs of superficial dissolution of BCP together with phagocytosis of minor fragments were observed. MNGCs on the surface of DBBM demonstrated sealing zones and ruffled borders, both features of mature osteoclasts. CONCLUSION MNGCs demonstrated distinctly different histological features depending on the bone substitute material used. Further research is warranted to understand the clinical implications of these morphological observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1478-1487, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin is an important regulator of renal salt and water excretion, and hyperinsulinemia has been implicated to play a role in hypertension. One of the target proteins of insulin action in the kidney is Na(+)/H(+) exchanger 3 (NHE3), a principal Na(+) transporter responsible for salt absorption in the mammalian proximal tubule. The molecular mechanisms involved in activation of NHE3 by insulin have not been studied so far. In opossum kidney (OK) cells, insulin increased Na(+)/H(+) exchange activity in a time- and concentration-dependent manner. This effect is due to activation of NHE3 as it persisted after pharmacological inhibition of NHE1 and NHE2. In the early phase of stimulation (2-12 h), NHE3 activity was increased without changes in NHE3 protein and mRNA. At 24 h, enhanced NHE3 activity was accompanied by an increase in total and cell surface NHE3 protein and NHE3 mRNA abundance. All the effects of insulin on NHE3 activity, protein, and mRNA were amplified in the presence of hydrocortisone. These results suggest that insulin stimulates renal tubular NHE3 activity via a biphasic mechanism involving posttranslational factors and an increase in NHE3 gene expression and the effects are dependent on the permissive action of hydrocortisone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An antibody generated to an α-keto amide containing hapten 1 catalyzes the cis-trans isomerization of peptidyl-prolyl amide bonds in peptides and in the protein RNase T1. The antibody-catalyzed peptide isomerization reaction showed saturation kinetics for the cis-substrate, Suc-Ala-Ala-Pro-Phe-pNA, with a kcat/Km value of 883 s−1⋅M−1; the reaction was inhibited by the hapten analog 13 (Ki = 3.0 ± 0.4 μM). Refolding of denatured RNase T1 to its native conformation also was catalyzed by the antibody, with the antibody-catalyzed folding reaction inhibitable both by the hapten 1 and hapten analog 13. These results demonstrate that antibodies can catalyze conformational changes in protein structure, a transformation involved in many cellular processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional structure of Corynebacterium 2,5-diketo-d-gluconic acid reductase A (2,5-DKGR A; EC 1.1.1.-), in complex with cofactor NADPH, has been solved by using x-ray crystallographic data to 2.1-Å resolution. This enzyme catalyzes stereospecific reduction of 2,5-diketo-d-gluconate (2,5-DKG) to 2-keto-l-gulonate. Thus the three-dimensional structure has now been solved for a prokaryotic example of the aldo–keto reductase superfamily. The details of the binding of the NADPH cofactor help to explain why 2,5-DKGR exhibits lower binding affinity for cofactor than the related human aldose reductase does. Furthermore, changes in the local loop structure near the cofactor suggest that 2,5-DKGR will not exhibit the biphasic cofactor binding characteristics observed in aldose reductase. Although the crystal structure does not include substrate, the two ordered water molecules present within the substrate-binding pocket are postulated to provide positional landmarks for the substrate 5-keto and 4-hydroxyl groups. The structural basis for several previously described active-site mutants of 2,5-DKGR A is also proposed. Recent research efforts have described a novel approach to the synthesis of l-ascorbate (vitamin C) by using a genetically engineered microorganism that is capable of synthesizing 2,5-DKG from glucose and subsequently is transformed with the gene for 2,5-DKGR. These modifications create a microorganism capable of direct production of 2-keto-l-gulonate from d-glucose, and the gulonate can subsequently be converted into vitamin C. In economic terms, vitamin C is the single most important specialty chemical manufactured in the world. Understanding the structural determinants of specificity, catalysis, and stability for 2,5-DKGR A is of substantial commercial interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of several individual ribozyme⋅substrate base pairs to binding and catalysis has been investigated using hammerhead ribozyme substrates that were truncated at their 3′ or 5′ ends. The base pairs at positions 1.1–2.1 and 15.2–16.2, which flank the conserved core, each contribute 104-fold in the chemical step, without affecting substrate binding. In contrast, base pairs distal to the core contribute to substrate binding but have no effect on the chemical step. These results suggest a “fraying model” in which each ribozyme⋅substrate helix can exist in either an unpaired (“open”) state or a helical (“closed”) state, with the closed state required for catalysis. The base pairs directly adjacent to the conserved core contribute to catalysis by allowing the closed state to form. Once the number of base pairs is sufficient to ensure that the closed helical state predominates, additional residues provide stabilization of the helix, and therefore increase binding, but have no further effect on the chemical step. Remarkably, the >5 kcal/mol free energy contribution to catalysis from each of the internal base pairs is considerably greater than the free energy expected for formation of a base pair. It is suggested that this unusually large energetic contribution arises because free energy that is typically lost in constraining residues within a base pair is expressed in the transition state, where it is used for positioning. This extends the concept of “intrinsic binding energy” from protein to RNA enzymes, suggesting that intrinsic binding energy is a fundamental feature of biological catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As previously reported, Listeria monocytogenes infection of P388D1 macrophages results in a rapid induction of NF-κB DNA-binding activity. Here we show that this induction of NF-κB activity occurs in a biphasic mode: first, a transient, IκBα degradation-dependent phase of activity, also induced by the nonvirulent species Listeria innocua, which is mediated by binding of the bacteria to the macrophage, or by adding Listeria-derived lipoteichoic acid to the macrophage; the second persistent phase of activation is only markedly induced when the bacteria enter the cytoplasm of the host cell and express the virulence genes plcA and plcB, encoding two phospholipases. We suggest that products of the enzymatic activity of phospholipases directly interfere with host cell signal transduction pathways, thus leading to persistent NF-κB activation via persistent IκBβ degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient monoclonal aldolase antibody that proceeds by an enamine mechanism was generated by reactive immunization. Here, this catalyst has been used in the total synthesis of epothilones A (1) and C (3). The starting materials for the synthesis of these molecules have been obtained by using antibody-catalyzed aldol and retro-aldol reactions. These precursors were then converted to epothilones A (1) and C (3) to complete the total synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2.15-Å resolution cocrystal structure of EcoRV endonuclease mutant T93A complexed with DNA and Ca2+ ions reveals two divalent metals bound in one of the active sites. One of these metals is ligated through an inner-sphere water molecule to the phosphate group located 3′ to the scissile phosphate. A second inner-sphere water on this metal is positioned approximately in-line for attack on the scissile phosphate. This structure corroborates the observation that the pro-SP phosphoryl oxygen on the adjacent 3′ phosphate cannot be modified without severe loss of catalytic efficiency. The structural equivalence of key groups, conserved in the active sites of EcoRV, EcoRI, PvuII, and BamHI endonucleases, suggests that ligation of a catalytic divalent metal ion to this phosphate may occur in many type II restriction enzymes. Together with previous cocrystal structures, these data allow construction of a detailed model for the pretransition state configuration in EcoRV. This model features three divalent metal ions per active site and invokes assistance in the bond-making step by a conserved lysine, which stabilizes the attacking hydroxide ion nucleophile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

F- and V-type ATPases are central enzymes in energy metabolism that couple synthesis or hydrolysis of ATP to the translocation of H+ or Na+ across biological membranes. They consist of a soluble headpiece that contains the catalytic sites and an integral membrane-bound part that conducts the ion flow. Energy coupling is thought to occur through the physical rotation of a stalk that connects the two parts of the enzyme complex. This mechanism implies that a stator-like structure prevents the rotation of the headpiece relative to the membrane-bound part. Such a structure has not been observed to date. Here, we report the projected structure of the V-type Na+-ATPase of Clostridium fervidus as determined by electron microscopy. Besides the central stalk, a second stalk of 130 Å in length is observed that connects the headpiece and membrane-bound part in the periphery of the complex. This additional stalk is likely to be the stator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous examination using natural all-RNA substrates that contained either a 5′-oxy or 5′-thio leaving group at the cleavage site, we demonstrated that (i) the attack by the 2′-oxygen at C17 on the phosphorus atom is the rate-limiting step only for the substrate that contains a 5′-thio group (R11S) and (ii) the departure of the 5′ leaving group is the rate-limiting step for the natural all-RNA substrate (R11O) in both nonenzymatic and hammerhead ribozyme-catalyzed reactions; the energy diagrams for these reactions were provided in our previous publication. In this report we found that the rate of cleavage of R11O by a hammerhead ribozyme was enhanced 14-fold when Mg2+ ions were replaced by Mn2+ ions, whereas the rate of cleavage of R11S was enhanced only 2.2-fold when Mg2+ ions were replaced by Mn2+ ions. This result appears to be exactly the opposite of that predicted from the direct coordination of the metal ion with the leaving 5′-oxygen, because a switch in metal ion specificity was not observed with the 5′-thio substrate. However, our quantitative analyses based on the previously provided energy diagram indicate that this result is in accord with the double-metal-ion mechanism of catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasma gondii is a member of the phylum Apicomplexa, a diverse group of intracellular parasites that share a unique form of gliding motility. Gliding is substrate dependent and occurs without apparent changes in cell shape and in the absence of traditional locomotory organelles. Here, we demonstrate that gliding is characterized by three distinct forms of motility: circular gliding, upright twirling, and helical rotation. Circular gliding commences while the crescent-shaped parasite lies on its right side, from where it moves in a counterclockwise manner at a rate of ∼1.5 μm/s. Twirling occurs when the parasite rights itself vertically, remaining attached to the substrate by its posterior end and spinning clockwise. Helical gliding is similar to twirling except that it occurs while the parasite is positioned horizontally, resulting in forward movement that follows the path of a corkscrew. The parasite begins lying on its left side (where the convex side is defined as dorsal) and initiates a clockwise revolution along the long axis of the crescent-shaped body. Time-lapse video analyses indicated that helical gliding is a biphasic process. During the first 180o of the turn, the parasite moves forward one body length at a rate of ∼1–3 μm/s. In the second phase, the parasite flips onto its left side, in the process undergoing little net forward motion. All three forms of motility were disrupted by inhibitors of actin filaments (cytochalasin D) and myosin ATPase (butanedione monoxime), indicating that they rely on an actinomyosin motor in the parasite. Gliding motility likely provides the force for active penetration of the host cell and may participate in dissemination within the host and thus is of both fundamental and practical interest.