961 resultados para BIOLOGICAL TISSUE
Resumo:
Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity,'' a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
Resumo:
Biological studies and heavy metal (Ni, v, Fe, Pb,Cd) determination in liver, gonad and muscle of Scomberomorus commerson were carried out from Oct 2006 to Sept 2007 in Hormozgan coastal waters. 599 Samples were gutted for reproduction and nutrition studies, fork length and weight were measured to nearest cm and g respectively. Meanwhile 40 samples were also investigated for heavy metal studies. All specimens were collected from two major landing sites (Bandar Lengeh & Bandar Abbas). Minimums & maximum fork length & weight were 29, 128 cm & 235 and 15350 g respectively.Isometric growth was shown according to our study and b was estimated 2.9 (overall), 2.91(male) & 2.89 (female). The average relative gut length was 0.52± 0.007 and it was determined that S. commerson is a carnivorous. More than 99 percent of gut content was different teleost fishes. Gastro somatic index had two peaks in Nov & Jan (before spawning) and with a decreased trend in July, the spawning period. Occurrence of empty stomach was estimated % 65.77. Maximum amount of condition factor was in Dec. Spawning season was started from June. The average of Absolute & relative fecundity (to weight unit) was 1217149±179315 and 178.2±15.58 respectively. Lm50% was estimated 75 cm for females. Sex ratio was 0.97: 1 (male: female). Chi- Square test showed no significant difference (p>0.05). Maximum amount of hepatosomatic index was estimated in March.Metal concentrations were determined using either Flame Atomic Absorption Spectroscopy (for Fe) or Graphite Furnace Atomic Absorption Spectroscopy (for Pb,Cd,Ni and V). The mean concentration (μg/g dry weight)of Pb,Cd,Ni,V and Fe in the liver were 0.0309, 0.0268, 0.0672, 0.0077, 2.5159 in the gonad 0.0440 ,0.0295, 0.1096, 0.0000, 1.4449 and in the muscle 0.0244, 0.0324, 0.0656, 0.0128, 1.6138 respectively. The maximum metal concentrations were below the maximum permissible limits for human consumption recommended by the USEPA, WHO and the UK. The results of Kendall's Tau-b correlation coefficient were as follows: The Liver tissue: There were significant positive linear relationships between accumulation of V, Fe, and Pb with Fork length, Pb and Fe with weight, GSI with Pb, Cd, V and 109 Fe, and a negative linear relationships between HSI with accumulation of V and Fe, Fork length, weight and GSI. The Gonad tissue: There were significant positive linear relationships between GSI with accumulation of Pb, Cd, Fe, Fork length and weight, a negative linear relationship between HSI with Fork length, weight and GSI. The Muscle tissue: There were significant positive linear relationships between accumulations of V, Fe with Fork length and weight factors and as well as GSI with Cd, V, Fe, Pb, Fork length and weight,a negative linear relationship between HSI with Fork length, weight, Cd, Fe and GSI. The results of Mann-Whitney U tests (P≤0.05) show that there were significant differences between summer and autumn from heavy metal contents in the studied tissues point of view. The only exceptions were for Ni in the liver, gonads and muscle and as well as there were significant differences between male and female from heavy metal contents in the studied tissues. The only exceptions were for Pb in muscle, Ni in liver, gonad and muscle, V in muscle, and Cd and Fe in gonads.
Resumo:
Fluid flow in biological tissues is important in both mechanical and biological contexts. Given the hierarchical nature of tissues, there are varying length scales at which time-dependent mechanical behavior due to fluid flow may be exhibited. Here, spherical nanoindentation and microindentation testings are used for the characterization of length scale effects in the mechanical response of hydrated tissues. Although elastic properties were consistent across length scales, there was a substantial difference between the time-dependent mechanical responses for large and small contact radii in the same tissue specimens. This difference was far more obvious when poroelastic analysis was used instead of viscoelastic analysis. Overall, indentation testing is a fast and robust technique for characterizing the hierarchical structure of biological materials from nanometer to micrometer length scales and is capable of making quantitative material property measurements to do with fluid flow. © 2011 Materials Research Society.
Resumo:
Nanoindentation is ideal for the characterization of inhomogeneous biological materials. However, the use of nanoindentation techniques in biological systems is associated with some distinctively different techniques and challenges. For example, engineering materials used in the microelectronics industry (e.g. ceramics and metals) for which the technique was developed, are relatively stiff and exhibit time-independent mechanical responses. Biological materials, on the other hand, exhibit time-dependent behavior, and can span a range of stiffness regimes from moduli of Pa to GPa - eight to nine orders of magnitude. As such, there are differences in the selection of instrumentation, tip geometry, and data analysis in comparison with the "black box" nanoindentation techniques as sold by commercial manufacturers. The use of scanning probe equipment (atomic force miscroscopy) is also common for small-scale indentation of soft materials in biology. The book is broadly divided into two parts. The first part presents the "basic science" of nanoindentation including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation overview provide perspectives that are optimized for biological applications, including discussions on hydrated materials and adaptations for low-stiffness materials. The second part of the book covers the applications of nanoindentation technique in biological materials. Included in the coverage are mineralized and nonmineralized tissues, wood and plant tissues, tissue-engineering substitute materials, cells and membranes, and cutting-edge applications at molecular level including the use of functionalized tips to probe specific molecular interactions (e.g. the ligand-receptor binding). The book concludes with a concise summary and an insightful forecast of the future highlighting the current challenges. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.
Resumo:
The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/mu m and 13.7 keV/mu m were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human. broblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/mu m, and 1.33 for LET 13.7 keV/mu m carbon ions. RBE for a doubling of post-mitotic. broblasts (PMF) in the population was 2.8 for LET 172 keV/mu m, and 1 for LET 13.7 keV/mu m carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
Tissue kallikrein, generally existing in living bodies as prokallikrein, is a serine proteinase that has proven of great significance to treat hypertension, cardiopathy and nephropathy. Although the extraction of tissue kallikrein from human urine is the most commonly used method to obtain such a protein, not only the yield is very little, but also the procedure is rather complex. Furthermore, the biological safety is uncertain. Therefore, the preparation of such a protein by genetic engineering method, including gene expression, cell culture, separation and purification, is very important. In this paper, a new method to obtain purified tissue prokallikrein excreted from insect cells by liquid chromatography has been proposed. In contrast to the previously published papers, the purification procedure is simplified to only three steps with the final yield of 57% and the purity of 95%, which is not only convenient, but also low-cost and suitable for the large-scale preparation of such a protein. The purified protein is further validated as prokallikrein by high performance liquid chromatography-mass spectrometry and amino acid sequencing. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.
Resumo:
A neural network model of 3-D visual perception and figure-ground separation by visual cortex is introduced. The theory provides a unified explanation of how a 2-D image may generate a 3-D percept; how figures pop-out from cluttered backgrounds; how spatially sparse disparity cues can generate continuous surface representations at different perceived depths; how representations of occluded regions can be completed and recognized without usually being seen; how occluded regions can sometimes be seen during percepts of transparency; how high spatial frequency parts of an image may appear closer than low spatial frequency parts; how sharp targets are detected better against a figure and blurred targets are detector better against a background; how low spatial frequency parts of an image may be fused while high spatial frequency parts are rivalrous; how sparse blue cones can generate vivid blue surface percepts; how 3-D neon color spreading, visual phantoms, and tissue contrast percepts are generated; how conjunctions of color-and-depth may rapidly pop-out during visual search. These explanations arise derived from an ecological analysis of how monocularly viewed parts of an image inherit the appropriate depth from contiguous binocularly viewed parts, as during DaVinci stereopsis. The model predicts the functional role and ordering of multiple interactions within and between the two parvocellular processing streams that join LGN to prestriate area V4. Interactions from cells representing larger scales and disparities to cells representing smaller scales and disparities are of particular importance.
Resumo:
OBJECTIVE: To investigate the value of serum antitissue transglutaminase IgA antibodies (IgA-TTG) and IgA antiendomysial antibodies (IgA-EMA) in the diagnosis of coeliac disease in cohorts from different geographical areas in Europe. The setting allowed a further comparison between the antibody results and the conventional small-intestinal histology. METHODS: A total of 144 cases with coeliac disease [median age 19.5 years (range 0.9-81.4)], and 127 disease controls [median age 29.2 years (range 0.5-79.0)], were recruited, on the basis of biopsy, from 13 centres in nine countries. All biopsy specimens were re-evaluated and classified blindly a second time by two investigators. IgA-TTG were determined by ELISA with human recombinant antigen and IgA-EMA by an immunofluorescence test with human umbilical cord as antigen. RESULTS: The quality of the biopsy specimens was not acceptable in 29 (10.7%) of 271 cases and a reliable judgement could not be made, mainly due to poor orientation of the samples. The primary clinical diagnosis and the second classification of the biopsy specimens were divergent in nine cases, and one patient was initially enrolled in the wrong group. Thus, 126 coeliac patients and 106 controls, verified by biopsy, remained for final analysis. The sensitivity of IgA-TTG was 94% and IgA-EMA 89%, the specificity was 99% and 98%, respectively. CONCLUSIONS: Serum IgA-TTG measurement is effective and at least as good as IgA-EMA in the identification of coeliac disease. Due to a high percentage of poor histological specimens, the diagnosis of coeliac disease should not depend only on biopsy, but in addition the clinical picture and serology should be considered.
Resumo:
The ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').
Resumo:
BACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1).
Resumo:
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Resumo:
The advent of digital microfluidic lab-on-a-chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. Moreover, digital microfluidics is being applied in other areas such as airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In most diagnostic and chemical-detection applications, a key challenge is the preparation of the analyte for presentation to the on-chip detection system. Thus, in diagnostics, raw physiological samples must be introduced onto the chip and then further processed by lysing blood cells and extracting DNA. For massively parallel DNA sequencing, sample preparation can be performed off chip, but the synthesis steps must be performed in a sequential on-chip format by automated control of buffers and nucleotides to extend the read lengths of DNA fragments. In airborne particulate-sampling applications, the sample collection from an air stream must be integrated into the LoC analytical component, which requires a collection droplet to scan an exposed impacted surface after its introduction into a closed analytical section. Finally, in tissue-engineering applications, the challenge for LoC technology is to build high-resolution (less than 10 microns) 3D tissue constructs with embedded cells and growth factors by manipulating and maintaining live cells in the chip platform. This article discusses these applications and their implementation in digital-microfluidic LoC platforms. © 2007 IEEE.
Resumo:
BACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.