325 resultados para BIOACID


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentrations are potentially affecting marine ecosystems twofold, by warming and acidification. The rising amount of CO2 taken up by the ocean lowers the saturation state of calcium carbonate, complicating the formation of this key biomineral used by many marine organisms to build hard parts like skeletons or shells. Reliable time-series data of seawater pH are needed to evaluate the ongoing change and compare long-term trends and natural variability. For the high-latitude ocean, the region facing the strongest CO2 uptake, such time-series data are so far entirely lacking. Our study provides, to our knowledge, the first reconstruction of seasonal cycle and long-term trend in pH for a high-latitude ocean obtained from 2D images of stable boron isotopes from a coralline alga.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of copepods to ocean acidification (OA) and warming may increase with time, however, studies >10 days and on synergistic effects are rare. We therefore incubated late copepodites and females of two dominant Arctic species, Calanus glacialis and Calanus hyperboreus, at 0 °C at 390 and 3000 µatm pCO2 for several months in fall/winter 2010. Respiration rates, body mass and mortality in both species and life stages did not change with pCO2. To detect synergistic effects, in 2011 C. hyperboreus females were kept at different pCO2 and temperatures (0, 5, 10 °C). Incubation at 10 °C induced sublethal stress, which might have overruled effects of pCO2. At 5 °C and 3000 µatm, body carbon was significantly lowest indicating a synergistic effect. The copepods, thus, can tolerate pCO2 predicted for a future ocean, but in combination with increasing temperatures they could be sensitive to OA.