933 resultados para BEAM-TO-COLUMN CONNECTION
Resumo:
The Therapy with proton beam has shown more e ective than Radiotherapy for oncology treatment. However, to its planning use photon beam Computing Tomography that not considers the fundamentals di erences the interaction with the matter between X-rays and Protons. Nowadays, there is a great e ort to develop Tomography with proton beam. In this way it is necessary to know the most likely trajectory of proton beam to image reconstruction. In this work was realized calculus of the most likely trajectory of proton beam in homogeneous target compound with water that was considered the inelastic nuclear interaction. Other calculus was the analytical calculation of lateral de ection of proton beam. In the calculation were utilized programs that use Monte Carlo Method: SRIM 2006 (Stopping and Range of Ions in Matter ), MCNPX (Monte Carlo N-Particle eXtended) v2.50. And to analytical calculation was employed the software Wolfram Mathematica v7.0. We obtained how di erent nuclear reaction models modify the trajectory of proton beam and the comparative between analytical and Monte Carlo method
Resumo:
A novel optical setup for imaging through reflection holography with Bi12TiO20 (BTO) sillenite photorefractive crystals is proposed. Aiming a compact, robust and simple optical setup the lensless Denisiuk arrangement was chosen, using a He-Ne red laser as light source. In this setup the holographic medium is placed between the light source and the object. The beam impinging the crystal front face is the reference one, while the light scattered by the surface is the object beam in a holographic recording by diffusion. In order to allow the readout of the diffracted wave only and to keep the setup simplicity a polarizing beam splitter cube (PBS) was positioned at the BTO input. The reference beam is s-polarized (polarization direction perpendicular to the table top) and the crystal. 〈001〉-axis is rotated by an angle γ with respect to the input polarization in order to make the transmitted object beam and the diffracted beam to have orthogonal polarizations. While the transmitted wave is reflected by the PBS at a right angle, the diffracted wave carrying the holographic reconstruction of the object passes through the PBS, being collected by a positive lens in order to form the holographic image at a CCD camera. The holographic recording with the grating vector is parallel to the 〈100〉-axis. An expression for the diffracted wave intensity as a function of γ was derived, and this relation was experimentally investigated. © 2008 American Institute of Physics.
Resumo:
This paper reports results for directed flow v(1) and elliptic flow v(2) of charged particles in Cu + Cu collisions at root s(NN) = 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4-GeV Cu + Cu collisions the prior observation that v1 is independent of the system size at 62.4 and 200 GeV and also extend the scaling of v(1) with eta/y(beam) to this system. The measured v(2)(p(T)) in Cu + Cu collisions is similar for root s(NN) throughout the range 22.4 to 200 GeV. We also report a comparison with results from transport model (ultrarelativistic quantum molecular dynamics and multiphase transport model) calculations. The model results do not agree quantitatively with the measured v(1)(eta), v(2)(p(T)), and v(2)(eta).
Resumo:
As the available public cerebral gene expression image data increasingly grows, the demand for automated methods to analyze such large amount of data also increases. An important study that can be carried out on these data is related to the spatial relationship between gene expressions. Similar spatial density distribution of expression between genes may indicate they are functionally correlated, thus the identification of these similarities is useful in suggesting directions of investigation to discover gene interactions and their correlated functions. In this paper, we describe the use of a high-throughput methodology based on Voronoi diagrams to automatically analyze and search for possible local spatial density relationships between gene expression images. We tested this method using mouse brain section images from the Allen Mouse Brain Atlas public database. This methodology provided measurements able to characterize the similarity of the density distribution between gene expressions and allowed the visualization of the results through networks and Principal Component Analysis (PCA). These visualizations are useful to analyze the similarity level between gene expression patterns, as well as to compare connection patterns between region networks. Some genes were found to have the same type of function and to be near each other in the PCA visualizations. These results suggest cerebral density correlations between gene expressions that could be further explored. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The sustained demand for faster,more powerful chips has beenmet by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SOC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MPSOC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NOCS) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the on-chip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation focuses on all of the above points, by describing a NoC architectural implementation called ×pipes; a NoC simulation environment within a cycle-accurate MPSoC emulator called MPARM; a NoC design flow consisting of a front-end tool for optimal NoC instantiation, called SunFloor, and a set of back-end facilities for the study of NoC physical implementations. This dissertation proves the viability of NoCs for current and upcoming designs, by outlining their advantages (alongwith a fewtradeoffs) and by providing a full NoC implementation framework. It also presents some examples of additional extensions of NoCs, allowing e.g. for increased fault tolerance, and outlines where NoCsmay find further application scenarios, such as in stacked chips.
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
La storiografia statunitense, a partire dagli anni Cinquanta, vide l’affermarsi di una nuova interpretazione della politica estera americana. Archiviata la storia diplomatica come storia dei trattati o storia delle interazioni delle élites dominanti, abbandonata una visione incentrata sull’equilibrio di potenza, il dibattito storiografico si arricchì della cosiddetta interpretazione «revisionista», antitetica rispetto a quella che, fino a quel momento, aveva predominato. Soggetto di analisi storica restava sempre lo Stato ma l’enfasi maggiore era posta sui fattori economici che ne influenzavano l’azione: si metteva in rilievo l’interazione tra l’interesse privato e il soggetto statale. Capofila di questa nuova scuola fu William Appleman Williams. Questa ricerca si pone l’obiettivo di delineare il contesto storiografico dal quale emersero gli studi di Williams e di cui egli ne roviesciò alcuni assunti fondamentali. Si intende tracciare il suo percorso intellettuale – storiografico e pubblico – al fine di restituire la complessità di un personaggio che divenne un vero e proprio «intellettuale pubblico». I quesiti, a cui questa ricerca vuole dar risposta riguardano l’evoluzione del percorso intellettuale di Williams tanto in ambito storiografico quanto, più in generale, in quello pubblico; il contributo alla ridefinizione dell’identità statunitense e del suo ruolo internazionale; il lascito della sua riflessione nella storiografia. Prendendo le mosse dall’idea di frontiera proposta da Turner, Williams sostenne che la fine dell’espansione territoriale «interna» aveva obbligato gli Stati Uniti a cercare nuovi mercati per il proprio surplus. Era stata tale necessità a catalizzare la Open Door Diplomacy, guidata da ragioni economiche, che presto identificarono l’interesse nazionale per trasformarsi in una vera e propria ideologia nel XX secolo.L’esito di tale politica estera fu la creazione di un impero non più territoriale ma frutto dell’espansione economica. E proprio questa riflessione sull’impero influenzò, negli anni Sessanta, la protesta studentesca che chiese un ripensamento del ruolo internazionale degli Stati Uniti.
Resumo:
In this dissertation the influence of a precast concrete cladding system on structural robustness of a multi-storey steel-composite building is studied. The analysis follows the well-established framework developed at Imperial College London for the appraisal of robustness of multi-storey buildings. For this scope a simplified nonlinear model of a typical precast concrete façade-system is developed. Particular attention is given to the connection system between structural frame and panel, recognised as the driving component of the nonlinear behaviour of the façade-system. Only connections involved in the gravity load path are evaluated (bearing connections). Together with standard connection, a newly proposed system (Slotted Bearing Connection) is designed to achieve a more ductile behaviour of the panel-connection system. A parametric study involving the dimensions of panel-connection components is developed to search for an optimal configuration of the bearing connection. From the appraisal of structural robustness of the panelised frame it is found that the standard connection systems may reduce the robustness of a multi-storey frame due to a poor ductile behaviour while the newly proposed connection is able to guarantee an enhanced response to the panelised multi-storey frame thanks to a higher ductility.
Resumo:
Smooth intercultural communication requires very complex tasks, especially when participants are very different in their cultural and linguistic backgrounds: this is the case of native Italian and Japanese speakers. A further difficulty in such a context can be found in the usage of a foreign language not mastered perfectly by speakers, which is the case for Italian intermediate learners of Japanese. The aim of this study is therefore to identify the linguistic difficulties common among Italian learners of Japanese as a foreign language and to further examine the consequences of incorrect pragma-linguistic deliveries in actual conversations. To this end, a series of linguistic aspects selected on the basis of the author's experience have been taken into consideration. Some aspects are expected to be difficult to master because of linguistic differences between Italian and Japanese, while some may be difficult due to their connection to the specific Japanese cultural context. The present study consists of six parts. The Introduction presents the state of the art on the research topic and defines the purpose of this research. Chapter 1 outlines the linguistic aspects of the Japanese language investigated in the study, specifically focusing on the following topics: writing system, phonology, loan words, numbers, ellipsis, levels of speech and honorifics. Chapter 2 presents an overview of the environment of teaching Japanese as a foreign language in the university setting in Italy. In Chapter 3 the first phase of the research is described, i.e. an online survey aimed at identifying the most problematic linguistic aspects. Chapter 4 presents the second phase of this study: a series of oral interactions between Japanese and Italian native speakers, conversing exclusively in Japanese, focusing on the management of misunderstandings with the use of actual linguistic data. The Conclusion outlines the results and possible future developments.
Resumo:
Free space optical (FSO) communication links can experience extreme signal degradation due to atmospheric turbulence induced spatial and temporal irradiance fuctuations (scintillation) in the laser wavefront. In addition, turbulence can cause the laser beam centroid to wander resulting in power fading, and sometimes complete loss of the signal. Spreading of the laser beam and jitter are also artifacts of atmospheric turbulence. To accurately predict the signal fading that occurs in a laser communication system and to get a true picture of how this affects crucial performance parameters like bit error rate (BER) it is important to analyze the probability density function (PDF) of the integrated irradiance fuctuations at the receiver. In addition, it is desirable to find a theoretical distribution that accurately models these ?uctuations under all propagation conditions. The PDF of integrated irradiance fuctuations is calculated from numerical wave-optic simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to very strong. Our results show that the gamma-gamma PDF provides a good fit to the simulated data distribution for all aperture sizes studied from weak through moderate scintillation. In strong scintillation, the gamma-gamma PDF is a better fit to the distribution for point-like apertures and the lognormal PDF is a better fit for apertures the size of the atmospheric spatial coherence radius ρ0 or larger. In addition, the PDF of received power from a Gaussian laser beam, which has been adaptively compensated at the transmitter before propagation to the receiver of a FSO link in the moderate scintillation regime is investigated. The complexity of the adaptive optics (AO) system is increased in order to investigate the changes in the distribution of the received power and how this affects the BER. For the 10 km link, due to the non-reciprocal nature of the propagation path the optimal beam to transmit is unknown. These results show that a low-order level of complexity in the AO provides a better estimate for the optimal beam to transmit than a higher order for non-reciprocal paths. For the 20 km link distance it was found that, although minimal, all AO complexity levels provided an equivalent improvement in BER and that no AO complexity provided the correction needed for the optimal beam to transmit. Finally, the temporal power spectral density of received power from a FSO communication link is investigated. Simulated and experimental results for the coherence time calculated from the temporal correlation function are presented. Results for both simulation and experimental data show that the coherence time increases as the receiving aperture diameter increases. For finite apertures the coherence time increases as the communication link distance is increased. We conjecture that this is due to the increasing speckle size within the pupil plane of the receiving aperture for an increasing link distance.
Resumo:
Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.
Resumo:
This study assessed if hospital-wide implementation of a needleless intravenous connection system reduces the number of reported percutaneous injuries, overall and those specifically due to intravenous connection activities.^ Incidence rates were compared before and after hospital-wide implementation of a needleless intravenous system at two hospitals, a full service general hospital and a pediatric hospital. The years 1989-1991 were designated as pre-implementation and 1993 was designated as post-implementation. Data from 1992 were not included in the effectiveness evaluation to allow employees to become familiar with use of the new device. The two hospitals showed rate ratios of 1.37 (95% CI = 1.22-1.54, p $\le$.0001) and 1.63 (95% CI = 1.34-1.97, p $\le$.0001), or a 27.1% and a 38.6% reduction in overall injury rate, respectively. Rate ratios for intravenous connection injuries were 2.67 (95% CI = 1.89-3.78, p $\le$.0001) and 3.35 (95% CI = 1.87-6.02, p $\le$.0001), or a 62.5% and a 69.9% reduction in injury rate, respectively. Rate ratios for all non-intravenous connection injuries were calculated to control for factors other than device implementation that may have been operating to reduce the injury rate. These rate ratios were lower, 1.21 and 1.44, demonstrating the magnitude of injury reduction due to factors other than device implementation. It was concluded that the device was effective in reduction of numbers of reported percutaneous injuries.^ Use-effectiveness of the system was also assessed by a survey of randomly selected device users to determine satisfaction with the device, frequency of use and barriers to use. Four hundred seventy-eight surveys were returned for a response rate of 50.9%. Approximately 94% of respondents at both hospitals expressed satisfaction with the needleless system and recommended continued use. The survey also revealed that even though over 50% of respondents report using the device "always" or "most of the time" for intravenous medication administration, flushing lines, and connecting secondary intravenous lines, needles were still being used for these same activities. Compatibility, accessibility and other technical problems were reported as reasons for using needles for these activities. These problems must be addressed, by both manufacturers and users, before the needleless system will be effective in prevention of all intravenous connection injuries. ^
Resumo:
Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^
Resumo:
The reflexive nature of reason and the unique relationship reason shares with autonomy in Kant's philosophy is the theoretical basis of this dissertation. The principle of respect for autonomy undergirds the two main legal and ethical tenets of genetic counseling, an emerging profession trying to accommodate the sweeping changes that have occurred in clinical genetics, clinical ethics, and case law applicable to medicine. These two tenets of the counseling profession, informed consent and nondirectiveness, both share a principlist interpretation of autonomy that I argue is flawed due to its connection to: instrumental forms of reasoning, empirical theories of action supporting rational choice, and a liberal paradigm of law. I offer an alternative bioethical-legal framework that is based in the Kantian tradition in law and ethics through the complex theories of Jurgen Habermas. Following Habermas's reconstruction of the mutually constituting notions of private and public autonomy, I will argue for a richer conceptualization of autonomy that can have significant implications for the legal and bioethical concepts supporting the profession of genetic counseling, and which can ultimately change counseling practice. ^
Resumo:
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.