878 resultados para BEAM DEPOSITION
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
2016
Resumo:
The role of a set of gases relevant within the context of biomolecules and technologically relevant molecules under the interaction of low-energy electrons was studied in an effort to contribute to the understanding of the underlying processes yielding negative ion formation. The results are relevant within the context of damage to living material exposed to energetic radiation, to the role of dopants in the ion-molecule chemistry processes, to Electron Beam Induced Deposition (EBID) and Ion Beam Induced Deposition (IBID) techniques. The research described in this thesis addresses dissociative electron attachment (DEA) and electron transfer studies involving experimental setups from the University of Innsbruck, Austria and Universidade Nova de Lisboa, Portugal, respectively. This thesis presents DEA studies, obtained by a double focusing mass spectrometer, of dimethyl disulphide (C2H6S2), two isomers, enflurane and isoflurane (C3F5Cl5) and two chlorinated ethanes, pentachloroethane (C2HCl5) and hexachloroethane (C2Cl6), along with quantum chemical calculations providing information on the molecular orbitals as well as thermochemical thresholds of anion formation for enflurane, isoflurane, pentachloroethane and hexachloroethane. The experiments represent the most accurate DEA studies to these molecules, with significant differences from previous work reported in the literature. As far as electron transfer studies are concerned, negative ion formation in collisions of neutral potassium atoms with N1 and N3 methylated pyrimidine molecules were obtained by time-of-flight mass spectrometry (TOF). The results obtained allowed to propose concerted mechanisms for site and bond selective excision of bonds.
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.
Resumo:
This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.
Resumo:
In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlOx layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlOx(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlOx thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/ intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are 102 and 5 105 , respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.
Resumo:
Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited usinga pure Ta target and a working atmosphere with a constant N2/O2ratio. The choice of this constant ratiolimits the study concerning the influence of each reactive gas, but allows a deeper understanding of theaspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous.This work begins by analysing the data obtained directly from the film deposition stage, followed bythe analysis of the morphology, composition and structure. For a better understanding regarding theinfluence of the deposition parameters, the analyses are presented by using the following criterion: thefilms were divided into two sets, one of them produced with grounded substrate holder and the otherwith a polarization of −50 V. Each one of these sets was produced with different partial pressure of thereactive gases P(N2+ O2). All the films exhibited a O/N ratio higher than the N/O ratio in the depositionchamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increaseof the O content is observed, associated to the strong decrease of the N content, when P(N2+ O2) is higherthan 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazingincidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-rayreflectivity studies found out that the density of the films depended on the deposition conditions: thehigher the gas pressure, the lower the density. Firstly, a dominant -Ta structure is observed, for lowP(N2+ O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2+ O2); thirdly, the films are amorphousfor the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOyfilms are explained, with detail, in the text.
Resumo:
Aiming at biosignal acquisition for bioelectrodes application, Ti-Ag thin films were produced by GLAD, in order to tailor their electromechanical properties. The electrical behaviour of the sculptured Ti-Ag thin films was studied with increasing annealing temperatures. The results revealed a good correlation with the set of morphological features displayed. With the increase of the vapour flux angle, a more defined structure was obtained, as well as a more porous morphology, which increased the electrical resistivity of the coatings. An important point consists in the recrystallization of Ti-Ag intermetallic phases due to the temperature increase (between 558 K and 773 K), which resulted in a sharp decrease of the electrical resistivity values.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
Biofilm adhesion to metals (copper, aluminium and brass) was studied at two different velocities and pH values of 7 and 9. Both bacteria and metals showed negative surface charges at those values of pH, which tends to slow down adhesion. Film densities increased with the fluid velocity and were also affected by the pH and by the growth rate of the bacteria. Long duration tests based on heat transfer measurements were run at five different fluid velocities and at pH = 7, showing in general an asymptotic behaviour and a control of deposition by adhesion and growth phenomena.
Resumo:
A fines de la década del '60 un grupo de investigadores rusos pudo obtener diamante a partir de experimentos con reacciones en fase vapor a bajas presiones de los gases envueltos en el proceso. En 1976 Derjagin et al. mostraron que la nucleación de diamante es posible sobre sustratos de Cu y en 1982 Matsumoto demuestra que la nucleación y crecimiento continuo a bajas presiones de diamante es posible sobre diversos substratos. Las especiales propiedades del diamante (D): dureza, elevado punto de fusión, inercia química, así como elevada conductividad del calor, sonido y de señales ópticas, ubican a este material como una de las prioridades de desarrollo e investigación de grupos de excelencia en el mundo entero. (...) Objetivos Generales y Específicos: El objetivo de este proyecto se basa en la construcción de un reactor para CVD (Chemical Vapour Deposition) y de los elementos auxiliares necesarios para producir diamante sintético por este método. Determinando los parámetros que controlan el proceso: mezcla de gases adecuada, temperatura de substrato, temperatura del plasma, presión parcial de los gases, vacío necesario y otros. En la primera etapa de 2 años se priorizará la puesta a punto del método, para luego pasar al estudio de las diferentes aplicaciones tecnológicas necesarias para la región. Específicamente, en el tercer año se tratará de generar diamantes como recubrimientos para herramientas de corte, así como para trapanos de velocidad, aprovechando residuos para la industria de abrasivos. Los objetivos generales no se cirscuncriben sólo al hecho de montar un reactor en laboratorio para CVD, sino una vez encontrados los parámetros que gobiernan esta técnica, producir diamante sintético para aplicaciones en la industria de herramientas de corte, micrófonos y óptica. Otro objetivo general de importancia es la formación de recursos humanos en técnicas de vacío, ingeniería de superficie y tecnología de plasma a través del personal y de los estudiantes involucrados en el proyecto, así como los participantes en cátedras del Departamento de Mecánica. En cuanto a los objetivos específicos para los dos primeros años, es preparar, construir y poner a punto un reactor de laboratorio de filamento caliente (Hot filament) por tecnología de plasma tipo CVD para obtener diamante sintético a partir de gases.
Resumo:
This work presents the results of an investigation of processes in the melting zone during Electron Beam Welding(EBW) through analysis of the secondary current in the plasma.The studies show that the spectrum of the secondary emission signal during steel welding has a pronounced periodic component at a frequency of around 15–25 kHz. The signal contains quasi-periodic sharp peaks (impulses). These impulses have stochastically varying amplitude and follow each other inseries, at random intervals between series. The impulses have a considerable current (up to 0.5 A). It was established that during electron-beam welding with the focal spot scanning these impulses follow each other almost periodically. It was shown that the probability of occurrence of these high-frequency perturbation increases with the concentration of energy in the interaction zone. The paper also presents hypotheses for the mechanism of the formation of the high-frequency oscillations in the secondary current signal in the plasma.
Resumo:
PURPOSE: To evaluate the efficacy of first-line chemotherapy (CT) in preventing external-beam radiotherapy (EBR) and/or enucleation in patients with retinoblastoma (Rbl). PATIENTS AND METHODS: Twenty-four patients with newly diagnosed unilateral or bilateral Rbl received CT associated with local treatment (LT). Two to five courses of etoposide and carboplatin were administered at 3- to 4-week intervals, depending on tumor response, and were completed each time by LT. RESULTS: Tumor response was observed in all eyes. Twenty-one of 24 patients showed a complete response (CR) that persisted at a median follow-up (FU) of 31 months (range, 4 to 41 months). Among the three patients who relapsed, two were lost to FU and one died of progressive disease. CR was achieved by CT and LT alone in 15 (71.4%) of 21 patients with less advanced disease (groups I to III). Six other patients with advanced disease (groups IV and V) experienced treatment failure and needed salvage treatment by EBR and/or enucleation. The difference between the two patient groups with regard to disease stage was statistically significant (P <.0001). EBR could be avoided in 13 (68.4%) of 19 patients, who presented with groups I to III (15 eyes) and group V (one eye) disease, whereas enucleation could be avoided in only two (40%) of five. CONCLUSION: CT combined with intensive LT is effective in patients with groups I to III Rbl, permitting the avoidance of EBR in the majority of these young children and, thus, reducing the risk of long-term sequelae. This is in contrast with the disappointing results for patients with groups IV and V Rbl, in whom EBR and/or enucleation was needed.