986 resultados para BAND-STRUCTURES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the electronic structures and magnetic properties of the anatase TiO2 doped with 3d transition metals (V, Cr, Mn, Fe, Co, Ni), using first-principles total energy calculations based on density functional theory (DFT). Using a molecular-orbital bonding model, the electronic structures of the doped anatase TiO2 are well understood. A band coupling model based on d-d level repulsions between the dopant ions is proposed to understand the chemical trend of the magnetic ordering. Ferromagnetism is found to be stabilized in the V-, Cr-, and Co-doped samples if there are no other carrier native defects or dopants. The ferromagnetism in the Cr- and Co-doped samples may be weakened by the donor defects. In the Mn-, and Fe-doped samples, the ferromagnetism can be enhanced by the acceptor and donor defects, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN photovoltaic structures with p-n junctions have been fabricated by metal organic chemical vapour deposition. Using double-crystal X-ray diffraction measurements, it was found that the room temperature band gaps of p-InGaN and n-InGaN films were 2.7 and 2.8 eV, respectively. Values of 3.4 x 10(-2) mA cm(-2) short-circuit current, 0.43 V open-circuit voltage and 0.57 fill factor have been achieved under ultraviolet illumination (360 nm), which were related to p-n junction connected back-to-back with a Schottky barrier and many defects of the p-InGaN film. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimized AlGaN/AlN/GaN high electron mobility transistor (HEMT) with high mobility GaN channel layer structures were grown on 2-in. diameter semi-insulating 6H-SiC substrates by MOCVD. The 2-in. diameter GaN HEMT wafer exhibited a low average sheet resistance of 261.9 Omega/square, with the resistance un-uniformity as low as 2.23%. Atomic force microscopy measurements revealed a smooth AlGaN surface whose root-mean-square roughness is 0.281 nm for a scan area of 5 x 5 mu m. For the single-cell HEMTs device of 2.5-mm gate width fabricated using the materials, a maximum drain current density of 1.31 A/mm, an extrinsic transconductance of 450 mS/mm, a current gain cutoff frequency of 24 GHz and a maximum frequency of oscillation 54 GHz were achieved. The four-cell internally-matched GaN HEMTs device with 10-mm total gate width demonstrated a very high output power of 45.2 W at 8 GHz under the condition of continuous-wave (CW), with a power added efficiency of 32.0% and power gain of 6.2 dB. To our best knowledge, the achieved output power of internally-matched devices are the state-of-the-art result ever reported for X-band GaN-based HEMTs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the aim of investigating the possible integration of optoelectronic devices, epitaxial GaN layers have been grown on Si(Ill) semiconductor-on-insulator (SOI) and on Si/CoSi2/Si(111) using metalorganic chemical vapor deposition. The samples are found to possess a highly oriented wurtzite structure, a uniform thickness, and abrupt interfaces. The epitaxial orientation is determined as GaN(0001)//Si(111), GaN[1120]//Si[110], and GaN[1010]//Si[112], and the GaN layer is tensilely strained in the direction parallel to the interface. According to Rutherford backscattering/channeling spectrometry and (0002) rocking curves, the crystalline quality of GaN on Si(111) SOI is better than that of GaN on silicide. Room-temperature photoluminescence of GaN/SOI reveals a strong near-band-edge emission at 368 nm (3.37 eV) with a full width at half-maximum of 59 meV. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures of InSb1-xNx nanowires are investigated using the ten-band k center dot p method. It is found that nitrogen increases the Rashba coefficient of the nanowires dramatically. For thick nanowires, the Rashba coefficient may increase by more than 20 times. The semiconductor-metal transition occurs more easily in InSb1-xNx nanowires than in InSb nanowires. The electronic structure of InSb1-xNx nanowires is very different from that of the bulk material. For fixed x the bulk material is a semimetal, while the nanowires are metal-like. In InSb1-xNx bulk material and thick nanowires, an interesting decrease of electron effective mass is observed near k=0 which is induced by the nitrogen, but this phenomenon disappears in thin nanowires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of two kinds of InGaN/GaN quantum-wells light emitting diodes, one of which was doped with Si in barriers while the other was not, are comparatively investigated using time-integrated photoluminescence and time-resolved photoluminescence techniques. The results clearly demonstrate the coexistence of the band gap renormalization and phase-space filling effect in the structures with Si doped barriers. It is surprisingly found that photogenerated carriers in the intentionally undoped structures decay nonexponentially, whereas carriers in the Si doped ones exhibit a well exponential time evolution. A new model developed by O. Rubel, S. D. Baranovskii, K. Hantke, J. D. Heber, J. Koch, P. Thomas, J. M. Marshall, W. Stolz, and W. H. Ruhle [J. Optoelectron. Adv. Mater. 7, 115 (2005)] was used to simulate the decay curves of the photogenerated carriers in both structures, which enables us to determine the localization length of the photogenerated carriers in the structures. It is found that the Si doping in the barriers not only leads to remarkable many-body effects but also significantly affects the carrier recombination dynamics in InGaN/GaN layered heterostructures. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese-gallium oxide nanowires were synthesized via in situ Mn doping during nanowire growth using a vapor phase evaporation method. The microstructure and composition of the products were characterized via transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The field and temperature dependence of the magnetization reveal the obvious hysteresis loop and large magnitude of Curie-Weiss temperature. The photoluminescence of the manganese-gallium oxide nanowires were studied in a temperature range between 10 and 300 K. A broad green emission band was observed which is attributed to the T-4(1)-(6)A(1) transition in Mn2+ (3d(5)) ions. (c) 2005 Elsevier B.V. All rights reserved.