978 resultados para B-spline functions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prefrontal (PFC) and orbitofrontal cortex (OFC) appear to be associated with both executive functions and olfaction. However, there is little data relating olfactory processing and executive functions in humans. The present study aimed at exploring the role of olfaction on executive functioning, making a distinction between primary and more cognitive aspects of olfaction. Three executive tasks of similar difficulty were used. One was used to assess hot executive functions (Iowa Gambling Task-IGT), and two as a measure of cold executive functioning (Stroop Colour and Word Test-SCWT and Wisconsin Card Sorting Test-WCST). Sixty two healthy participants were included: 31 with normosmia and 31 with hyposmia. Olfactory abilities were assessed using the ''Sniffin' Sticks'' test and the olfactory threshold, odour discrimination and odour identification measures were obtained. All participants were female, aged between 18 and 60. Results showed that participants with hyposmia displayed worse performance in decision making (IGT; Cohen's-d = 0.91) and cognitive flexibility (WCST; Cohen's-d between 0.54 and 0.68) compared to those with normosmia. Multiple regression adjusted by the covariates participants' age and education level showed a positive association between odour identification and the cognitive inhibition response (SCWT-interference; Beta = 0.29; p = .034). The odour discrimination capacity was not a predictor of the cognitive executive performance. Our results suggest that both hot and cold executive functions seem to be associated with higher-order olfactory functioning in humans. These results robustly support the hypothesis that olfaction and executive measures have a common neural substrate in PFC and OFC, and suggest that olfaction might be a reliable cognitive marker in psychiatric and neurologic disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-6 plays a central role in supporting pathological TH2 and TH17 cell development and inhibiting the protective T regulatory cells in allergic asthma. TH17 cells have been demonstrated to regulate allergic asthma in general and T-bet-deficiency-induced asthma in particular. Here we found an inverse correlation between T-bet and Il-6 mRNA expression in asthmatic children. Moreover, experimental subcutaneous immunotherapy (SIT) in T-bet((-/-)) mice inhibited IL-6, IL-21R and lung TH17 cells in a setting of asthma. Finally, local delivery of an anti-IL-6R antibody in T-bet((-/-)) mice resulted in the resolution of this allergic trait. Noteworthy, BATF, crucial for the immunoglobulin-class-switch and TH2,TH17 development, was found down-regulated in the lungs of T-bet((-/-)) mice after SIT and after treatment with anti-IL-6R antibody, indicating a critical role of IL-6 in controlling BATF/IRF4 integrated functions in TH2, TH17 cells and B cells also in a T-bet independent fashion in allergic asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary : PPARα is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. In rodents, PPARα is highly expressed in liver, especially in parenchymal cells, where it has an impact on several hepatic functions such as nutrient metabolism, inflammation and metabolic stress. Ligands for PPARα comprise long chain unsaturated fatty acids, eicosanoids and lipid lowering fibrate drugs. In liver, many metabolic processes are orchestrated by the hepatic circadian clock. The aim of the hepatic clock is to synchronize cellular pathways allowing animals to adapt their metabolism to predictable daily changes in the environment. Indeed, similar to PPARα, the hepatic clock influences nutrient metabolism and detoxification through circadian output regulators :the PAR-domain basic leucine zipper proteins called PAR blip proteins. In this report, we showed that through a positive feedback loop mechanism, PAR. blip, proteins participate to the availability of PPARα endogenous ligands that contribute to the circadian expression and functions of PPARα. Interestingly, we also discovered some unexpected hepatic sexual dimorphic functions of PPARα. These functions are determined b PPARα sumoylation, interaction with DNA methylation mechanism and with unexpected proteins with gender specificity. The connection between circadian clock and hepatic sexual dimorphism opens new perspectives regarding the chronobiology of PPARα activity and the beneficial effects of PPARα agonist in the treatment of diseases related to steroid hormones metabolism characterized by inflammation and hepatotoxicity. Résumé : PPARα est un facteur de transcription activé par un ligand, membre de la superfamille des récepteurs nucléaires. Chez les rongeurs, PPARα est fortement exprimé dans le foie, spécialement dans les cellules du parenchyme dans lesquelles il joue un role important dans les fonctions hépatiques tels que le métabolisme des nutriments, l'inflammation et les stress métaboliques. Les ligands pour PPARα comprennent les acides gras à longues chaînes, les eicosanoides et les médicaments hypolipidémiques (fibrates). Dans le foie, beaucoup de processus métaboliques sont orchestrés par l'horloge circadienne hépatique. Le but de cette horloge est de synchroniser les voies métaboliqués permettant aux animaux d'adapter leurs métabolismes aux changements journaliers. Ainsi, l'horloge hépatique influence le métabolisme des nutriments tels que l'utilisation des lipides à travers certains régulateurs circadians appelés facteurs de transcription PAR bZips. Dans ce mémoire, nous avons montré qu'à travers une boucle de régulation, les protéines PAR bZip contrôlent la production des ligands endogènes à PPARα, jouant un rôle dans l'expression circadienne et les fonctions de PPARα. Nous avons également découvert des aspects méconnus des fonctions liées au dimorphisme sexuel de PPARα. Nous avons montré que PPARα est différemment sumoylisé entre les sexes et interagit avec la méthylation de l'ADN ainsi qu'avec des protéines insoupçonnées comme partenaires de PPARα. De part leur lien avec l'horloge circadienne et le dimorphisme sexuel, nos découvertes ouvrent de nouvelles perspectives concernant la chronobiologie de l'activité de PPARα et les effets bénéfiques des ses activateurs dans le traitement des maladies liées au métabolisme des hormones stéroides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DP1, a dimerization partner protein of the transcription factor E2F, is known to inhibit Wnt/β-catenin signalling along with E2F, although the function of DP1 itself was not well characterized. Here, we present a novel dual regulatory mechanism of Wnt/β-catenin signalling by DP1 independent from E2F. DP1 negatively regulates Wnt/β-catenin signalling by inhibiting Dvl-Axin interaction and by enhancing poly-ubiquitination of β-catenin. In contrast, DP1 positively modulates the signalling upon Wnt stimulation, via increasing cytosolic β-catenin and antagonizing the kinase activity of NLK. In Xenopus embryos, DP1 exerts both positive and negative roles in Wnt/β-catenin signalling during anteroposterior neural patterning. From subcellular localization analyses, we suggest that the dual roles of DP1 in Wnt/β-catenin signalling are endowed by differential nucleocytoplasmic localizations. We propose that these dual functions of DP1 can promote and stabilize biphasic Wnt-on and Wnt-off states in response to a gradual gradient of Wnt/β-catenin signalling to determine differential cell fates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer's patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that belong to the nuclear hormone receptor family. Three isotypes (PPAR alpha, PPAR beta or delta, and PPAR gamma) with distinct tissue distributions and cellular functions have been found in vertebrates. All three PPAR isotypes are expressed in rodent and human skin. They were initially investigated for a possible function in the establishment of the permeability barrier in skin because of their known function in lipid metabolism in other cell types. In vitro studies using specific PPAR agonists and in vivo gene disruption approaches in mice indeed suggest an important contribution of PPAR alpha in the formation of the epidermal barrier and in sebocyte differentiation. The PPAR gamma isotype plays a role in stimulating sebocyte development and lipogenesis, but does not appear to contribute to epidermal tissue differentiation. The third isotype, PPAR beta, regulates the late stages of sebaceous cell differentiation, and is the most effective isotype in stimulating lipid production in these cells, both in rodents and in humans. In addition, PPAR beta activation has pro-differentiating effects in keratinocytes under normal and inflammatory conditions. Finally, preliminary studies also point to a potential role of PPAR in hair follicle growth and in melanocyte differentiation. By their diverse biological effects on cell proliferation and differentiation in the skin, PPAR agonists or antagonists may offer interesting opportunities for the treatment of various skin disorders characterized by inflammation, cell hyperproliferation, and aberrant differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: By analyzing human immunodeficiency virus type 1 (HIV-1) pol sequences from the Swiss HIV Cohort Study (SHCS), we explored whether the prevalence of non-B subtypes reflects domestic transmission or migration patterns. METHODS: Swiss non-B sequences and sequences collected abroad were pooled to construct maximum likelihood trees, which were analyzed for Swiss-specific subepidemics, (subtrees including ≥80% Swiss sequences, bootstrap >70%; macroscale analysis) or evidence for domestic transmission (sequence pairs with genetic distance <1.5%, bootstrap ≥98%; microscale analysis). RESULTS: Of 8287 SHCS participants, 1732 (21%) were infected with non-B subtypes, of which A (n = 328), C (n = 272), CRF01_AE (n = 258), and CRF02_AG (n = 285) were studied further. The macroscale analysis revealed that 21% (A), 16% (C), 24% (CRF01_AE), and 28% (CRF02_AG) belonged to Swiss-specific subepidemics. The microscale analysis identified 26 possible transmission pairs: 3 (12%) including only homosexual Swiss men of white ethnicity; 3 (12%) including homosexual white men from Switzerland and partners from foreign countries; and 10 (38%) involving heterosexual white Swiss men and females of different nationality and predominantly nonwhite ethnicity. CONCLUSIONS: Of all non-B infections diagnosed in Switzerland, <25% could be prevented by domestic interventions. Awareness should be raised among immigrants and Swiss individuals with partners from high prevalence countries to contain the spread of non-B subtypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors. METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged ≥55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke. RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3×10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7×10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)). CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, using HIV-1-derived lentivectors, we obtained efficient transduction of primary human B lymphocytes cocultured with murine EL-4 B5 thymoma cells, but not of isolated B cells activated by CD40 ligation. Coculture with a cell line is problematic for gene therapy applications or study of gene functions. We have now found that transduction of B cells in a system using CpG DNA was comparable to that in the EL-4 B5 system. A monocistronic vector with a CMV promoter gave 32 +/- 4.7% green fluorescent protein (GFP)+ cells. A bicistronic vector, encoding IL-4 and GFP in the first and second cistrons, respectively, gave 14.2 +/- 2.1% GFP+ cells and IL-4 secretion of 1.3 +/- 0.2 ng/10(5) B cells/24 h. This was similar to results obtained in CD34+ cells using the elongation factor-1alpha promoter. Activated memory and naive B cells were transducible. After transduction with a bicistronic vector encoding a viral FLIP molecule, vFLIP was detectable by FACS or Western blot in GFP+, but not in GFP-, B cells, and 57% of sorted GFP+ B cells were protected against Fas ligand-induced cell death. This system should be useful for gene function research in primary B cells and development of gene therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.