873 resultados para Audio-visual Speech Recognition, Visual Feature Extraction, Free-parts, Monolithic, ROI
Resumo:
Human Activity Recognition (HAR) is an emerging research field with the aim to identify the actions carried out by a person given a set of observations and the surrounding environment. The wide growth in this research field inside the scientific community is mainly explained by the high number of applications that are arising in the last years. A great part of the most promising applications are related to the healthcare field, where it is possible to track the mobility of patients with motor dysfunction as also the physical activity in patients with cardiovascular risk. Until a few years ago, by using distinct kind of sensors, a patient follow-up was possible. However, far from being a long-term solution and with the smartphone irruption, that monitoring can be achieved in a non-invasive way by using the embedded smartphone’s sensors. For these reasons this Final Degree Project arises with the main target to evaluate new feature extraction techniques in order to carry out an activity and user recognition, and also an activity segmentation. The recognition is done thanks to the inertial signals integration obtained by two widespread sensors in the greater part of smartphones: accelerometer and gyroscope. In particular, six different activities are evaluated walking, walking-upstairs, walking-downstairs, sitting, standing and lying. Furthermore, a segmentation task is carried out taking into account the activities performed by thirty users. This can be done by using Hidden Markov Models and also a set of tools tested satisfactory in speech recognition: HTK (Hidden Markov Model Toolkit).
Resumo:
Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.
Resumo:
Traditional visual servoing systems have been widely studied in the last years. These systems control the position of the camera attached to the robot end-effector guiding it from any position to the desired one. These controllers can be improved by using the event-based control paradigm. The system proposed in this paper is based on the idea of activating the visual controller only when something significant has occurred in the system (e.g. when any visual feature can be loosen because it is going outside the frame). Different event triggers have been defined in the image space in order to activate or deactivate the visual controller. The tests implemented to validate the proposal have proved that this new scheme avoids visual features to go out of the image whereas the system complexity is reduced considerably. Events can be used in the future to change different parameters of the visual servoing systems.
Resumo:
Las teorías cognitivas han demostrado que el pensamiento humano se encuentra corporeizado; es decir, que accedemos a la realidad mediante nuestros sentidos y no podemos huir de ellos. Para entender y manejar conceptos abstractos utilizamos proyecciones metafóricas basadas en sensaciones corporales. De ahí la ubicuidad de la metáfora en el lenguaje cotidiano. Aunque esta afirmación ha sido ampliamente probada con el análisis del corpus verbal en distintas lenguas, apenas existen investigaciones en el corpus audiovisual. Si las metáforas primarias forman parte de nuestro inconsciente cognitivo, son inherentes al ser humano y consecuencia de la naturaleza del cerebro, deben generar también metáforas visuales. En este artículo, se analizan y discuten una serie de ejemplos para comprobarlo.
Resumo:
3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.
Resumo:
Capacity limits in visual attention have traditionally been studied using static arrays of elements from which an observer must detect a target defined by a certain visual feature or combination of features. In the current study we use this visual search paradigm, with accuracy as the dependent variable, to examine attentional capacity limits for different visual features undergoing change over time. In Experiment 1, detectability of a single changing target was measured under conditions where the type of change (size, speed, colour), the magnitude of change, the set size and homogeneity of the unchanging distractors were all systematically varied. Psychometric function slopes were calculated for different experimental conditions and ‘change thresholds’extracted from these slopes were used in Experiment 2, in which multiple supra-threshold changes were made, simultaneously, either to a single or to two or three different stimulus elements. These experiments give an objective psychometric paradigm for measuring changes in visual features over time. Results favour object-based accounts of visual attention, and show consistent differences in the allocation of attentional capacity to different perceptual dimensions.
Resumo:
In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index imagersquos multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partitionrsquos center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images haves similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the ldquodimensionality curserdquo existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms imagersquos text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partitionrsquos center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude.
Resumo:
After many years of scholar study, manuscript collections continue to be an important source of novel information for scholars, concerning both the history of earlier times as well as the development of cultural documentation over the centuries. D-SCRIBE project aims to support and facilitate current and future efforts in manuscript digitization and processing. It strives toward the creation of a comprehensive software product, which can assist the content holders in turning an archive of manuscripts into a digital collection using automated methods. In this paper, we focus on the problem of recognizing early Christian Greek manuscripts. We propose a novel digital image binarization scheme for low quality historical documents allowing further content exploitation in an efficient way. Based on the existence of closed cavity regions in the majority of characters and character ligatures in these scripts, we propose a novel, segmentation-free, fast and efficient technique that assists the recognition procedure by tracing and recognizing the most frequently appearing characters or character ligatures.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.
Resumo:
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify
Resumo:
The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.
Resumo:
This thesis examines the state of audiovisual translation (AVT) in the aftermath of the COVID-19 emergency, highlighting new trends with regards to the implementation of AI technologies as well as their strengths, constraints, and ethical implications. It starts with an overview of the current AVT landscape, focusing on future projections about its evolution and its critical aspects such as the worsening working conditions lamented by AVT professionals – especially freelancers – in recent years and how they might be affected by the advent of AI technologies in the industry. The second chapter delves into the history and development of three AI technologies which are used in combination with neural machine translation in automatic AVT tools: automatic speech recognition, speech synthesis and deepfakes (voice cloning and visual deepfakes for lip syncing), including real examples of start-up companies that utilize them – or are planning to do so – to localize audiovisual content automatically or semi-automatically. The third chapter explores the many ethical concerns around these innovative technologies, which extend far beyond the field of translation; at the same time, it attempts to revindicate their potential to bring about immense progress in terms of accessibility and international cooperation, provided that their use is properly regulated. Lastly, the fourth chapter describes two experiments, testing the efficacy of the currently available tools for automatic subtitling and automatic dubbing respectively, in order to take a closer look at their perks and limitations compared to more traditional approaches. This analysis aims to help discerning legitimate concerns from unfounded speculations with regards to the AI technologies which are entering the field of AVT; the intention behind it is to humbly suggest a constructive and optimistic view of the technological transformations that appear to be underway, whilst also acknowledging their potential risks.
Resumo:
Throughout the years, technology has had an undeniable impact on the AVT field. It has revolutionized the way audiovisual content is consumed by allowing audiences to easily access it at any time and on any device. Especially after the introduction of OTT streaming platforms such as Netflix, Amazon Prime Video, Disney+, Apple TV+, and HBO Max, which offer a vast catalog of national and international products, the consumption of audiovisual products has been on a constant rise and, consequently, the demand for localized content too. In turn, the AVT industry resorts to new technologies and practices to handle the ever-growing workload and the faster turnaround times. Due to the numerous implications that it has on the industry, technological advancement can be considered an area of research of particular interest for the AVT studies. However, in the case of dubbing, research and discussion regarding the topic is lagging behind because of the more limited impact that technology has had on the very conservative dubbing industry. Therefore, the aim of the dissertation is to offer an overview of some of the latest technological innovations and practices that have already been implemented (i.e. cloud dubbing and DeepDub technology) or that are still under development and research (i.e. automatic speech recognition and respeaking, machine translation and post-editing, audio-based and visual-based dubbing techniques, text-based editing of talking-head videos, and automatic dubbing), and respectively discuss their reception by the industry professionals, and make assumptions about their future implementation in the dubbing field.
Resumo:
The use of iris recognition for human authentication has been spreading in the past years. Daugman has proposed a method for iris recognition, composed by four stages: segmentation, normalization, feature extraction, and matching. In this paper we propose some modifications and extensions to Daugman's method to cope with noisy images. These modifications are proposed after a study of images of CASIA and UBIRIS databases. The major modification is on the computationally demanding segmentation stage, for which we propose a faster and equally accurate template matching approach. The extensions on the algorithm address the important issue of pre-processing that depends on the image database, being mandatory when we have a non infra-red camera, like a typical WebCam. For this scenario, we propose methods for reflection removal and pupil enhancement and isolation. The tests, carried out by our C# application on grayscale CASIA and UBIRIS images show that the template matching segmentation method is more accurate and faster than the previous one, for noisy images. The proposed algorithms are found to be efficient and necessary when we deal with non infra-red images and non uniform illumination.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.