1000 resultados para Atomic absorption spectrometry (AAS) (0.45 µm pore filtered)
Resumo:
Sediment depth is given in mbsf.
Resumo:
We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ~3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.
Resumo:
During Cruise VA 04/2 of the R. V. Valdivia in 1972, numerous samples were collected of manganese nodules, sodiments, and the pore water of the Sediments in the area betwoen 6° N and 11° N and between 149° W and 154° W in the Central Pacific. This paper reports on the geochemical study of 70 manganese nodules from 12 stations (box-core and dredge samples). The nodules Irom a single Station vary considerably in diemical composition. These variations are of the same magnitude as the variations in nodule composition over the entire survey area. The ratios of manganese to nickel, copper, and zinc show good positive correlation as do the ratios of iron to lead and, to a lesser extent, of iron to cobalt. No correlation was found between the environment of the manganese nodules and their metal content. Three internal zones, the outer. intermediate, and core zones, of some nodules were studied in detail. Trends of differences of Chemical composition from surface to core were found for numerous elements and elemental ratios.