874 resultados para Asymmetric Gene Flow
Resumo:
Stock structure of eastern Pacific yellowfin tuna was investigated by analyzing allozymes and random amplified polymorphic DNAs (RAPDs) from 10 samples of 20–30 individuals each, collected between 1994 and 1996 from fishing vessels operating in the Inter-American Tropical Tuna Commission (IATTC) yellowfin regulatory area (CYRA). Allozyme analysis resolved 28 loci, eight of which were polymorphic under the 0.95 criterion: Aat-S*, Glud, Gpi-F*, Gpi-S*, La, Lgg, Pap-F*, and 6-Pgd, resulting in a mean heterozygosity over all allozyme loci of H = 0.052. Four polymorphic RAPD loci were selected for analysis, resulting in a mean heterozygosity of H = 0.43. Eight of 45 pairwise comparisons of allozyme allele frequencies among the ten samples showed significant differences after correction for multiple testing (P<0.0001), all of which involved comparisons with the Gulf of California sample. Confirmation of this signal of population structure would have management implications. No significant divergence in RAPD allele frequencies was observed among samples. Weir and Cockerham θ estimated for allozyme loci (θ=0.048; P<0.05) and RAPD loci (θ=0.030; P>0.05) revealed little population structure among samples. Mantel tests demonstrated that the genetic relationships among samples did not correspond to an isolation-by-distance model for either class of marker. Four of eight comparisons of coastal and offshore samples revealed differences of allele frequencies at the Gpi-F* locus (P<0.05), although none of these differences was significant after correction for multiple testing (P>0.001). Results are consistent with the hypothesis that the CYRA yellowfin tuna samples comprise a single genetic stock, although gene flow appears to be greater among coastal samples than between coastal and offshore samples.
Resumo:
A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary.
Resumo:
An unequal contribution of male and female lineages from parental populations to admixed ones is not uncommon in the American continents, as a consequence of directional gene flow from European men into African and Hispanic Americans in the past several c
Resumo:
Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker-based analysis reveals cattle-specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mY(cattle) = 2.66 +/- 0.53% and Q(cattle) = 0.69 +/- 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai-Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak-cattle hybridization is primarily driven to produce F-1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make-up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.
Resumo:
Six sample specimens of Trachypithecus francoisi and 3 of T. leucocephalus were analyzed by use of allozyme electrophoresis and random amplified polymorphism DNA (RAPD) in order to clarify the challenged taxonomic status of the white-head langur. Among the 44 loci surveyed, only 1 locus (PGM-2) was found to be polymorphic. Nei's genetic distance was 0.0025. In total, thirty 10-mer arbitrary primers were used for RAPD analysis, of which 22 generated clear bands. Phylogenetic trees were constructed based on genetic distances using neighbor-joining and UPGMA methods. The results show that T. francoisi and T: leucocephalus are not monophyletic. T. francoisi from Guangxi, China and Vietnam could not be clearly distinguished, and they are not divided into 2 clusters. A t-test was performed to evaluate between genetic distances within and between T. leucocephalus and T. francoisi taxa groups. The statistical test shows that the taxa group within T: leucocephalus and T: francoisi does not significantly differ from that between T: leucocephalus and T: francoisi at the 5% level. Our results suggest that the level of genetic differentiation between T, leucocephalus and T. francoisi is relatively low. Recent gene flow might exist between T. francoisi and T. leucocephalus. Combining morphological features, geographical distribution, allozyme data, RAPD data, and mtDNA sequences, we suggest that the white-head langur might be a subspecies of T. francoisi.
Resumo:
China has numerous native domestic goat breeds, but so far there has been no extensive study on genetic diversity, population demographic history, and origin of Chinese goats. Here, we examined the genetic diversity and phylogeographic structure of Chinese domestic goats by determining a 481-bp fragment of the first hypervariable region of mitochondrial DNA (mtDNA) control region from 368 individuals representing 18 indigenous breeds. Phylogenetic analyses revealed that there were four mtDNA lineages (A-D) identified in Chinese goats, in which lineage A was predominant, lineage B was moderate, and lineages C and D were at low frequency. These results further support the multiple maternal origins of domestic goats. The pattern of genetic variation in goat mtDNA sequences indicated that the two larger lineages A and B had undergone population expansion events. In a combined analysis of previously reported sequences and our sequences belonging to lineage B, we detected two subclades, in which one was unique to eastern Asia and another was shared between eastern and southern Asia. A larger genetic variation in eastern Asia than southern Asia and the pattern of phylogeographic variation in lineage B suggest that at least one subclade of lineage B originated from eastern Asia. There was no significant geographical structuring in Chinese goat populations, which suggested that there existed strong gene flow among goat populations caused by extensive transportation of goats in history. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Platycephalus indicus is a large benthic fish that inhabits temperate and tropical coastal waters of the Indo-West Pacific and found on sand or mud bottom in vary shallow area of estuary and near shore to depth of 25m. This species is dominant species of platycephalidae family, in Khuzestan, Bushehr and Hormozgan provinces and mainly is captured by bottom trawl, gillnet and moshta in Hormozgan. This study was designed to evaluate population variation and differentiation of bartail flathead (Platycephalus indicus (Linnaeus, 1785))in the Iranian waters of Persian Gulf using the morphometric and meristic characters and by AFLP marker. . A total 180 fish specimens were collected by gill net from six station(khor mosa, bahrekan, shif, motaf, charak and bandar abbas) that was 30 individual related to every station in Iranian shores of Persian Gulf . 28 morphometric factors and 11meristic specialties were measured and morphometric factors was standardized with Beacham formula. Univariate analysis of variance (One-way ANOVA) revealed significant differences with varying degrees between the means for 21 standardized morphometric measurements and 6 meristic counts that showed high significant differences between the six stations sampling. Discriminate function analysis (DFA) or the overall random assignment of individuals into their original groups was for morphometric and meristic characters was 47.9% and 53.9% respectively. The data were subjected to a principle component analysis (PCA) which grouped in eight and four factors for morphometric and meristic charactersrespectively.. Genetic diversity of six populations of bartail flathead (Platycephalus indicus) was investigated using amplified fragment length polymorphism (AFLP). A total of 118 reproducible bands amplified with ten AFLP primer combinations were obtained from 42 fishes that were collected from six different locations in the northern of Persian Gulf. The percentage of polymorphic bands was 57.06%. Average of Nei’s genetic diversity was 0.200±0.008, and Average of Shannon’s index was 0.300±0.011. The results of AMOVA analysis indicated that 66% of the genetic variation contained within populations and 34% occurred among populations and gene flow was 0.6454.The estimated level of population differentiation asmeasured by average Fst value across all loci was 0.327. Plotting discriminant functions 1 and 2 and UPGMA dendrograms based on Euclidian distance and genetic distance also showed at least five separate populations of bartail flathead in the northern Persian Gulf.
Resumo:
This study investigates the genetic population and gene flow in the clownfish (Amphiprion ocellaris), across the Langkawi and Payar Archipelago by analysis of molecular markers in the mitochondrial region.
Resumo:
Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000-2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Habitat fragmentation may have some significant effects on population genetic structure because geographic distance and physical barriers may impede gene flow between populations. In this study, we investigated whether recent habitat fragmentation affected genetic structure and diversity of populations of the nematode Procamallanus fulvidraconis in the yellowhead catfish, Pelteobagrus fin't4draco. The nematode was collected from 12 localities in 7 floodplain lakes of the Yangtze River. Using I I intersirnple sequence repeat markers, analysis of molecular variance showed that genetic diversity occurred mainly within populations (70.26%). Expected heterozygosity (He) of P. fulvidraconis was barely different between connected (0.2105) and unconnected lakes (0.2083). Population subdivision (Fst) between connected lakes (0.2177) was higher than in unconnected lakes (0. 1676). However, the connected and unconnected lakes did not Cluster into 2 clades. A Mantel test revealed significant positive correlation between genetic and geographic distances (R = 0.5335, P < 0.01). These results suggest that habitat fragmentation did not cause genetic differentiation among populations or a reduction of diversity in isolated populations of P. fulvidraconis. At least 2 factors may increase the dispersal range of the nematode, i.e., flash flooding in summer and other species of fish that may serve as the definitive hosts. Moreover, lake fragmentation is probably a recent process; population size of the nematode in these lakes is large enough to maintain Population structure.
Resumo:
To conserve and utilize the genetic pool of gynogenetic gibel carp (Carassius auratus gibelio), the Fangzheng and Qihe stock hatcheries have been established in China. However, little information is available on the amount of genetic variation within and between these populations. In this study, clonal diversity in 101 fish from these two stock hatcheries and 35 fish from two other hatcheries in Wuhan and Pengze respectively was analysed for variation in serum transferrin. Thirteen clones were found in Fangzheng and Qihe, of which 12 were novel. Six clones were specific to Fangzheng and three specific to Qihe, whereas four were shared among the Fangzheng and Qihe fish. To obtain more knowledge on genetic diversity and genealogical relationships within gibel carp, the complete mitochondrial DNA (mtDNA) control region (similar to 920 bp) was sequenced in 64 individuals representing all 14 clones identified in the four hatcheries. Differences in the mtDNA sequences varied remarkably among hatcheries, with the Fangzheng and Qihe lines demonstrating high diversity and Wuhan and Pengze showing no variation. The Fangzheng and Qihe lines might represent two distinct matrilineal sources. One of the Qihe samples carried the haplotype shared by a most widely cultivated Fangzheng clone, indicating that a Fangzheng clone escaped from cultivated ponds and moved into the Qihe hatchery. Four Fangzheng samples clustered within the lineage formed mainly by Qihe samples, most likely reflecting historical gene flow from Qihe to Fangzheng. It is suggested that clones in Wuhan originated from Fangzheng, consistent with their introduction history, supporting the hypothesis that gibel carp in Pengze were domesticated from individuals in the Fangzheng hatchery.
Resumo:
Although the peritrichous ciliate Carchesium polypinum is common in freshwater, its population genetic structure is largely unknown. We used inter-simple sequence repeat (ISSR) fingerprinting to analyze the genetic structure of 48 different isolates of the species from four lakes in Wuhan, central China. Using eight polymorphic primers, 81 discernible DNA fragments were detected, among which 76 (93.83%) were polymorphic, indicating high genetic diversity at the isolate level. Further, Nei's gene diversity (h) and Shannon's Information index (I) between the different isolates both revealed a remarkable genetic diversity, higher than previously indicated by their morphology. At the same time, substantial gene flow was found. So the main factors responsible for the high level of diversity within populations are probably due to conjugation (sexual reproduction) and wide distribution of swarmers. Analysis of molecular variance (AMOVA) showed that there was low genetic differentiation among the four populations probably due to common ancestry and flooding events. The cluster analysis and principal component analysis (PCA) suggested that genotypes isolated from the same lake displayed a higher genetic similarity than those from different lakes. Both analyses separated C. polypinum isolates into subgroups according to the geographical locations. However, there is only a weak positive correlation between the genetic distance and geographical distance, suggesting a minor effect of geographical distance on the distribution of genetic diversity between populations of C. polypinum at the local level. In conclusion, our studies clearly demonstrated that a single morphospecies may harbor high levels of genetic diversity, and that the degree of resolution offered by morphology as a marker for measuring distribution patterns of genetically distinct entities is too low.
Resumo:
149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocyptis scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and F-st values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (pi = 0.00096-0.00485). Therefore the Gymnocyptis populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gym-nocypris populations of Basin Qaidam should give a high priority in conservation programs.
Resumo:
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011 +/- 0.0002 and haplotypic diversity 0.65 +/- 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by F-st and Phi(st) yielded statistically significant population genetic structure (F-st = 0.44, P < 0.05; phi(st) = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.
Resumo:
The sequencing analysis of the mitochondrial DNA control region (mtCR DNA) was performed to assess the genetic divergence and population structure of the Chinese sucker Myxocyprinus asiaticus (Cypriniformes Catostomidae) using four sample lots from natural populations of the Yangtze River. The mtCR DNA sequences of approximately 920 base pairs were obtained. A total of 223 nucleotide positions were polymorphic, and these defined 39 haplotypes. Of the 39 haplotypes, 37 (90%) were not shared, and among the populations as a whole there was little sharing of haplotypes. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated a higher level of genetic diversity of Chinese sucker through the river. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) among populations (60.29%), and within populations (39.71%). The topology according to the neighbor joining and maximum parsimony methods showed mosaic composition of the 39 haplotypes, suggesting that the populations wore not completely divergent. The pairwise F statistic values, however, indicated that the population structuring existed to some extent among the geographic populations. There was a positive relationship between the aquatic distance and the genetic distance (Fst) among the populations (P<0.05). Based on our data, it is suggested that genetic drift, gene flow, and stochastic events are the possible factors influencing the population structure and genetic variation.