902 resultados para Arthritis Clinical-trials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS Several countries are working to adapt clinical trial regulations to align the approval process to the level of risk for trial participants. The optimal framework to categorize clinical trials according to risk remains unclear, however. Switzerland is the first European country to adopt a risk-based categorization procedure in January 2014. We assessed how accurately and consistently clinical trials are categorized using two different approaches: an approach using criteria set forth in the new law (concept) or an intuitive approach (ad hoc). METHODS This was a randomized controlled trial with a method-comparison study nested in each arm. We used clinical trial protocols from eight Swiss ethics committees approved between 2010 and 2011. Protocols were randomly assigned to be categorized in one of three risk categories using the concept or the ad hoc approach. Each protocol was independently categorized by the trial's sponsor, a group of experts and the approving ethics committee. The primary outcome was the difference in categorization agreement between the expert group and sponsors across arms. Linear weighted kappa was used to quantify agreements, with the difference between kappas being the primary effect measure. RESULTS We included 142 of 231 protocols in the final analysis (concept = 78; ad hoc = 64). Raw agreement between the expert group and sponsors was 0.74 in the concept and 0.78 in the ad hoc arm. Chance-corrected agreement was higher in the ad hoc (kappa: 0.34 (95% confidence interval = 0.10-0.58)) than in the concept arm (0.27 (0.06-0.50)), but the difference was not significant (p = 0.67). LIMITATIONS The main limitation was the large number of protocols excluded from the analysis mostly because they did not fit with the clinical trial definition of the new law. CONCLUSION A structured risk categorization approach was not better than an ad hoc approach. Laws introducing risk-based approaches should provide guidelines, examples and templates to ensure correct application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE There is debate on how the methodological quality of clinical trials should be assessed. We compared trials of physical therapy (PT) judged to be of adequate quality based on summary scores from the Physiotherapy Evidence Database (PEDro) scale with trials judged to be of adequate quality by Cochrane Risk of Bias criteria. DESIGN Meta-epidemiological study within Cochrane Database of Systematic Reviews. METHODS Meta-analyses of PT trials were identified in the Cochrane Database of Systematic Reviews. For each trial PeDro and Cochrane assessments were extracted from the PeDro and Cochrane databases. Adequate quality was defined as adequate generation of random sequence, concealment of allocation, and blinding of outcome assessors (Cochrane criteria) or as trials with a PEDro summary score ≥5 or ≥6 points. We combined trials of adequate quality using random-effects meta-analysis. RESULTS Forty-one Cochrane reviews and 353 PT trials were included. All meta-analyses included trials with PEDro scores ≥5, 37 (90.2%) included trials with PEDro scores ≥6 and only 22 (53.7%) meta-analyses included trials of adequate quality according to the Cochrane criteria. Agreement between PeDro and Cochrane was poor for PeDro scores of ≥5 points (kappa = 0.12; 95% CI 0.07 to 0.16) and slight for ≥6 points (kappa 0.24; 95% CI 0.16-0.32). When combining effect sizes of trials deemed to be of adequate quality according to PEDro or Cochrane criteria, we found that a substantial difference in the combined effect size (≥0.15) was evident in 9 (22%) out of the 41 meta-analyses for PEDro cutoff ≥5 and 10 (24%) for cutoff ≥6. CONCLUSIONS The PeDro and Cochrane approaches lead to different sets of trials of adequate quality, and different combined treatment estimates from meta-analyses of these trials. A consistent approach to assessing RoB in trials of physical therapy should be adopted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Hyperthermia has been shown to improve the effectiveness of chemotherapy and radiotherapy in the treatment of cancer. This paper summarises all recent clinical trials registered in the ClinicalTrials.gov registry. MATERIALS AND METHODS The records of 175,538 clinical trials registered at ClinicalTrials.gov were downloaded on 29 September 2014 and a database was established. We searched this database for hyperthermia or equivalent words. RESULTS A total of 109 trials were identified in which hyperthermia was part of the treatment regimen. Of these, 49 trials (45%) had hyperthermic intraperitoneal chemotherapy after cytoreductive surgery (HIPEC) as the primary intervention, and 14 other trials (13%) were also testing some form of intraperitoneal hyperthermic chemoperfusion. Seven trials (6%) were testing perfusion attempts to other locations (thoracic/pleural n = 4, limb n = 2, hepatic n = 1). Sixteen trials (15%) were testing regional hyperthermia, 13 trials (12%) whole body hyperthermia, seven trials (6%) superficial hyperthermia and two trials (2%) interstitial hyperthermia. One remaining trial tested laser hyperthermia. CONCLUSIONS In contrast to the general opinion, this analysis shows continuous interest and ongoing clinical research in the field of hyperthermia. Interestingly, the majority of trials focused on some form of intraperitoneal hyperthermic chemoperfusion. Despite the high number of active clinical studies, HIPEC is a topic with limited attention at the annual meetings of the European Society for Hyperthermic Oncology and the Society of Thermal Medicine. The registration of on-going clinical trials is of paramount importance for the achievement of a comprehensive overview of available clinical research activities involving hyperthermia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To investigate the frequency of interim analyses, stopping rules, and data safety and monitoring boards (DSMBs) in protocols of randomized controlled trials (RCTs); to examine these features across different reasons for trial discontinuation; and to identify discrepancies in reporting between protocols and publications. STUDY DESIGN AND SETTING We used data from a cohort of RCT protocols approved between 2000 and 2003 by six research ethics committees in Switzerland, Germany, and Canada. RESULTS Of 894 RCT protocols, 289 prespecified interim analyses (32.3%), 153 stopping rules (17.1%), and 257 DSMBs (28.7%). Overall, 249 of 894 RCTs (27.9%) were prematurely discontinued; mostly due to reasons such as poor recruitment, administrative reasons, or unexpected harm. Forty-six of 249 RCTs (18.4%) were discontinued due to early benefit or futility; of those, 37 (80.4%) were stopped outside a formal interim analysis or stopping rule. Of 515 published RCTs, there were discrepancies between protocols and publications for interim analyses (21.1%), stopping rules (14.4%), and DSMBs (19.6%). CONCLUSION Two-thirds of RCT protocols did not consider interim analyses, stopping rules, or DSMBs. Most RCTs discontinued for early benefit or futility were stopped without a prespecified mechanism. When assessing trial manuscripts, journals should require access to the protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Missing outcome data are common in clinical trials and despite a well-designed study protocol, some of the randomized participants may leave the trial early without providing any or all of the data, or may be excluded after randomization. Premature discontinuation causes loss of information, potentially resulting in attrition bias leading to problems during interpretation of trial findings. The causes of information loss in a trial, known as mechanisms of missingness, may influence the credibility of the trial results. Analysis of trials with missing outcome data should ideally be handled with intention to treat (ITT) rather than per protocol (PP) analysis. However, true ITT analysis requires appropriate assumptions and imputation of missing data. Using a worked example from a published dental study, we highlight the key issues associated with missing outcome data in clinical trials, describe the most recognized approaches to handling missing outcome data, and explain the principles of ITT and PP analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When conducting a randomized comparative clinical trial, ethical, scientific or economic considerations often motivate the use of interim decision rules after successive groups of patients have been treated. These decisions may pertain to the comparative efficacy or safety of the treatments under study, cost considerations, the desire to accelerate the drug evaluation process, or the likelihood of therapeutic benefit for future patients. At the time of each interim decision, an important question is whether patient enrollment should continue or be terminated; either due to a high probability that one treatment is superior to the other, or a low probability that the experimental treatment will ultimately prove to be superior. The use of frequentist group sequential decision rules has become routine in the conduct of phase III clinical trials. In this dissertation, we will present a new Bayesian decision-theoretic approach to the problem of designing a randomized group sequential clinical trial, focusing on two-arm trials with time-to-failure outcomes. Forward simulation is used to obtain optimal decision boundaries for each of a set of possible models. At each interim analysis, we use Bayesian model selection to adaptively choose the model having the largest posterior probability of being correct, and we then make the interim decision based on the boundaries that are optimal under the chosen model. We provide a simulation study to compare this method, which we call Bayesian Doubly Optimal Group Sequential (BDOGS), to corresponding frequentist designs using either O'Brien-Fleming (OF) or Pocock boundaries, as obtained from EaSt 2000. Our simulation results show that, over a wide variety of different cases, BDOGS either performs at least as well as both OF and Pocock, or on average provides a much smaller trial. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo simulation has been conducted to investigate parameter estimation and hypothesis testing in some well known adaptive randomization procedures. The four urn models studied are Randomized Play-the-Winner (RPW), Randomized Pôlya Urn (RPU), Birth and Death Urn with Immigration (BDUI), and Drop-the-Loses Urn (DL). Two sequential estimation methods, the sequential maximum likelihood estimation (SMLE) and the doubly adaptive biased coin design (DABC), are simulated at three optimal allocation targets that minimize the expected number of failures under the assumption of constant variance of simple difference (RSIHR), relative risk (ORR), and odds ratio (OOR) respectively. Log likelihood ratio test and three Wald-type tests (simple difference, log of relative risk, log of odds ratio) are compared in different adaptive procedures. ^ Simulation results indicates that although RPW is slightly better in assigning more patients to the superior treatment, the DL method is considerably less variable and the test statistics have better normality. When compared with SMLE, DABC has slightly higher overall response rate with lower variance, but has larger bias and variance in parameter estimation. Additionally, the test statistics in SMLE have better normality and lower type I error rate, and the power of hypothesis testing is more comparable with the equal randomization. Usually, RSIHR has the highest power among the 3 optimal allocation ratios. However, the ORR allocation has better power and lower type I error rate when the log of relative risk is the test statistics. The number of expected failures in ORR is smaller than RSIHR. It is also shown that the simple difference of response rates has the worst normality among all 4 test statistics. The power of hypothesis test is always inflated when simple difference is used. On the other hand, the normality of the log likelihood ratio test statistics is robust against the change of adaptive randomization procedures. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard methods for testing safety data are needed to ensure the safe conduct of clinical trials. In particular, objective rules for reliably identifying unsafe treatments need to be put into place to help protect patients from unnecessary harm. DMCs are uniquely qualified to evaluate accumulating unblinded data and make recommendations about the continuing safe conduct of a trial. However, it is the trial leadership who must make the tough ethical decision about stopping a trial, and they could benefit from objective statistical rules that help them judge the strength of evidence contained in the blinded data. We design early stopping rules for harm that act as continuous safety screens for randomized controlled clinical trials with blinded treatment information, which could be used by anyone, including trial investigators (and trial leadership). A Bayesian framework, with emphasis on the likelihood function, is used to allow for continuous monitoring without adjusting for multiple comparisons. Close collaboration between the statistician and the clinical investigators will be needed in order to design safety screens with good operating characteristics. Though the math underlying this procedure may be computationally intensive, implementation of the statistical rules will be easy and the continuous screening provided will give suitably early warning when real problems were to emerge. Trial investigators and trial leadership need these safety screens to help them to effectively monitor the ongoing safe conduct of clinical trials with blinded data.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interim clinical trial monitoring procedures were motivated by ethical and economic considerations. Classical Brownian motion (Bm) techniques for statistical monitoring of clinical trials were widely used. Conditional power argument and α-spending function based boundary crossing probabilities are popular statistical hypothesis testing procedures under the assumption of Brownian motion. However, it is not rare that the assumptions of Brownian motion are only partially met for trial data. Therefore, I used a more generalized form of stochastic process, called fractional Brownian motion (fBm), to model the test statistics. Fractional Brownian motion does not hold Markov property and future observations depend not only on the present observations but also on the past ones. In this dissertation, we simulated a wide range of fBm data, e.g., H = 0.5 (that is, classical Bm) vs. 0.5< H <1, with treatment effects vs. without treatment effects. Then the performance of conditional power and boundary-crossing based interim analyses were compared by assuming that the data follow Bm or fBm. Our simulation study suggested that the conditional power or boundaries under fBm assumptions are generally higher than those under Bm assumptions when H > 0.5 and also matches better with the empirical results. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common endpoints can be divided into two categories. One is dichotomous endpoints which take only fixed values (most of the time two values). The other is continuous endpoints which can be any real number between two specified values. Choices of primary endpoints are critical in clinical trials. If we only use dichotomous endpoints, the power could be underestimated. If only continuous endpoints are chosen, we may not obtain expected sample size due to occurrence of some significant clinical events. Combined endpoints are used in clinical trials to give additional power. However, current combined endpoints or composite endpoints in cardiovascular disease clinical trials or most clinical trials are endpoints that combine either dichotomous endpoints (total mortality + total hospitalization), or continuous endpoints (risk score). Our present work applied U-statistic to combine one dichotomous endpoint and one continuous endpoint, which has three different assessments and to calculate the sample size and test the hypothesis to see if there is any treatment effect. It is especially useful when some patients cannot provide the most precise measurement due to medical contraindication or some personal reasons. Results show that this method has greater power then the analysis using continuous endpoints alone. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ascertainment and analysis of adverse reactions to investigational agents presents a significant challenge because of the infrequency of these events, their subjective nature and the low priority of safety evaluations in many clinical trials. A one year review of antibiotic trials published in medical journals demonstrates the lack of standards in identifying and reporting these potentially fatal conditions. This review also illustrates the low probability of observing and detecting rare events in typical clinical trials which include fewer than 300 subjects. Uniform standards for ascertainment and reporting are suggested which include operational definitions of study subjects. Meta-analysis of selected antibiotic trials using multivariate regression analysis indicates that meaningful conclusions may be drawn from data from multiple studies which are pooled in a scientifically rigorous manner. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treating patients with combined agents is a growing trend in cancer clinical trials. Evaluating the synergism of multiple drugs is often the primary motivation for such drug-combination studies. Focusing on the drug combination study in the early phase clinical trials, our research is composed of three parts: (1) We conduct a comprehensive comparison of four dose-finding designs in the two-dimensional toxicity probability space and propose using the Bayesian model averaging method to overcome the arbitrariness of the model specification and enhance the robustness of the design; (2) Motivated by a recent drug-combination trial at MD Anderson Cancer Center with a continuous-dose standard of care agent and a discrete-dose investigational agent, we propose a two-stage Bayesian adaptive dose-finding design based on an extended continual reassessment method; (3) By combining phase I and phase II clinical trials, we propose an extension of a single agent dose-finding design. We model the time-to-event toxicity and efficacy to direct dose finding in two-dimensional drug-combination studies. We conduct extensive simulation studies to examine the operating characteristics of the aforementioned designs and demonstrate the designs' good performances in various practical scenarios.^