944 resultados para Artefact removal
Resumo:
A physical model is presented to describe the kinds of static forces responsible for adhesion of nano-scale copper metal particles to silicon surface with a fluid layer. To demonstrate the extent of particle cleaning, Received in revised form equilibrium separation distance (ESD) and net adhesion force (NAF) of a regulated metal particle with different radii (10-300 nm) on the silicon surface in CO2-based cleaning systems under different pressures were simulated. Generally, increasing the pressure of the cleaning system decreased the net adhesion force between spherical copper particle and silicon surface entrapped with medium. For CO2 + isopropanol cleaning system, the equilibrium separation distance exhibited a maximum at temperature 313.15 K in the Equilibrium separation distance regions of pressure space (1.84-8.02 MPa). When the dimension of copper particle was given, for example, High pressure 50 nm radius particles, the net adhesion force decreased and equilibrium separation distance increased with increased pressure in the CO2 + H2O cleaning system at temperature 348.15 K under 2.50-12.67 MPa pressure range. However, the net adhesion force and equilibrium separation distance both decreased with an increase in surfactant concentration at given pressure (27.6 or 27.5 MPa) and temperature (318 or 298 K) for CO2 + H2O with surfactant PFPE COO-NH4+ or DiF(8)-PO4-Na+. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Acetyltransferases and deacetylases catalyze the addition and removal, respectively, of acetyl groups to the epsilon-amino group of protein lysine residues. This modification can affect the function of a protein through several means, including the recruitment of specific binding partners called acetyl-lysine readers. Acetyltransferases, deacetylases, and acetyl-lysine readers have emerged as crucial regulators of biological processes and prominent targets for the treatment of human disease. This work describes a combination of structural, biochemical, biophysical, cell-biological, and organismal studies undertaken on a set of proteins that cumulatively include all steps of the acetylation process: the acetyltransferase MEC-17, the deacetylase SIRT1, and the acetyl-lysine reader DPF2. Tubulin acetylation by MEC-17 is associated with stable, long-lived microtubule structures. We determined the crystal structure of the catalytic domain of human MEC-17 in complex with the cofactor acetyl-CoA. The structure in combination with an extensive enzymatic analysis of MEC-17 mutants identified residues for cofactor and substrate recognition and activity. A large, evolutionarily conserved hydrophobic surface patch distal to the active site was shown to be necessary for catalysis, suggesting that specificity is achieved by interactions with the alpha-tubulin substrate that extend outside of the modified surface loop. Experiments in C. elegans showed that while MEC-17 is required for touch sensitivity, MEC-17 enzymatic activity is dispensible for this behavior. SIRT1 deacetylates a wide range of substrates, including p53, NF-kappaB, FOXO transcription factors, and PGC-1-alpha, with roles in cellular processes ranging from energy metabolism to cell survival. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an apo form and in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a beta-hairpin structure that complements the beta-sheet of the NAD^+-binding domain, covering an essentially invariant, hydrophobic surface. A comparison of the apo and cofactor bound structures revealed conformational changes throughout catalysis, including a rotation of a smaller subdomain with respect to the larger NAD^+-binding subdomain. A biochemical analysis identified key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. DPF2 represses myeloid differentiation in acute myelogenous leukemia. Finally, we solved the crystal structure of the tandem PHD domain of human DPF2. We showed that DPF2 preferentially binds H3 tail peptides acetylated at Lys14, and binds H4 tail peptides with no preference for acetylation state. Through a structural and mutational analysis we identify the molecular basis of histone recognition. We propose a model for the role of DPF2 in AML and identify the DPF2 tandem PHD finger domain as a promising novel target for anti-leukemia therapeutics.
Resumo:
Spurious reflection is one of the troublesome problems in phase-shifting interferometry. This paper deals with the problem on the basis of a two-run-times-two-frame phase-shift algorithm, in which the phase shifts are shared out between the reference beam and the object beam. The effect of spurious reflection on phase measurement is investigated; two simple methods for removal of the effect are presented and each needs only six interferograms. Two other solutions to the spurious reflection problem are also reviewed. The simulation results obtained using these four solutions are compared. The influence of a mix of phase-shifter miscalibration and spurious reflection on phase measurement is also discussed.
Resumo:
In the process of interferometric testing, the measurement result is influenced by the system structure, which reduces the measurement accuracy. To obtain an accurate test result, it is necessary to analyze the test system, and build the relationship between the measurement error and the system parameters. In this paper, the influences of the system elements which include the collimated lens and the standard surface on the interferometric testing are analyzed, the expressions of phase distribution and wavefront error on the detector are obtained, the method to remove some element errors is introduced, and the optimization structure relationships are given. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.
Resumo:
The management of municipal solid waste (MSW), particularly the role of incineration, is currently a subject of public debate. Incineration shows to be a good alternative of reducing the volume of waste and eliminating certain infectious components. Moreover, Municipal Waste Incinerators (MWI), are reported to be highly hygienic and apart from that MWIs are immediately effective in terms of transport (incinerators can be built close to the waste sources) and incineration's nature. Nevertheless, the emissions of many hazardous substances make the Municipal Waste Incineration (MWI) plants to be unpopular. Metals (especially lead, manganese, cadmium, chromium and mercury) are concentrated in fly and bottom ashes. Furthermore, incomplete combustion produces a wide variety of potentially hazardous organic compounds, such as aldehydes, polycyclic aromatic hydrocarbons (PAH), chlorinated hydrocarbons including polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF), and even acid gases, including NOx. Many of these hazardous substances are carcinogenic and some have direct systemic toxicity.
Resumo:
[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.