891 resultados para Apatite concentrate
Resumo:
Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair.
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
Poly (lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO3 (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration. X-ray diffraction (XRD), N2 adsorption-desorption analysis and scanning electron microscopy (SEM) were used to analyze the phase structure, surface area/pore volume, and microstructure of amorphous CS (aCS) and crystal CS (cCS), as well as their composite microspheres. The in vitro bioactivity of aCS and cCS – PLGA microspheres was evaluated by investigating their apatite-mineralization ability in simulated body fluids (SBF) and the viability of human bone mesenchymal stem cells (BMSCs). The in vivo bioactivity was investigated by measuring their de novo bone-formation ability. The results showed that the incorporation of both aCS and cCS enhanced the in vitro and in vivo bioactivity of PLGA microspheres. cCS/PLGA microspheres improved better in vitro BMSC viability and de novo bone-formation ability in vivo, compared to aCS/PLGA microspheres. Our study indicates that controlling the phase structure of CS is a promising method to modulate the bioactivity of polymer microsphere system for potential bone tissue regeneration.
Resumo:
It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute as its high mechanical strength. However, porous YSZ bodies are biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance the bioactivity. In this study, the porous zirconia scaffolds were prepared by infiltration of Acrylonitrile Butadiene Styrene (ABS) scaffolds with 3 mol% yttria stabilized zirconia slurry. After sintering, a method of sol-gel dip coating was involved to make coating layer of mesoporous bioglass (MBGs). The porous zirconia without the coating had high porosities of 60.1% to 63.8%, and most macropores were interconnected with pore sizes of 0.5-0.8mm. The porous zirconia had compressive strengths of 9.07-9.90MPa. Moreover, the average coating thickness was about 7μm. There is no significant change of compressive strength for the porous zirconia with mesoporous biogalss coating. The bone marrow stromal cell (BMSC) proliferation test showed both uncoated and coated zirconia scaffolds have good biocompatibility. The scanning electron microscope (SEM) micrographs and the compositional analysis graphs demonstrated that after testing in the simulated body fluid (SBF) for 7 days, the apatite formation occurred on the coating surface. Thus, porous zirconia-based ceramics were modified with bioactive coating of mesoporous bioglass for potential biomedical applications.
Resumo:
Quality, as well as project success, in construction projects should be capable of being regarded as the fulfillment of expectation of those contributors and stakeholders involved in such projects. Although a significant amount of quality practices have been introduced within the industry, establishment and attainment of reasonable levels of quality internationally in construction projects continues to be an ongoing problem. To date, some investigation into the introduction and improvement of quality practices and stakeholder management in the construction industry has been accomplished independently, but so far no major studies have been completed that examine comprehensively how quality management practices that particularly concentrate on the stakeholders’ perspective of quality can be used to contribute to final project quality outcomes. This paper aims to examine the process for development of a framework for better involvement of stakeholders in quality planning and practices and subsequently to contribute to higher quality outcomes within construction projects. Through extensive literature review it highlights various perceptions of quality, categorizes quality issues with particular focus on benefits and shortcomings and also examines stakeholders’ viewpoint of project quality in order to promote the improvement of outcomes throughout a project’s lifecycle. It proposes a set of arranged information as a basis for development of prospective framework which ultimately aims to improve project quality outcomes. The subsequent framework that will be developed from this research will provide project managers and owners with the required information and strategic direction to achieve their own and their stakeholders’ targets for implementation of quality practices and achievement of high quality outcomes on their future projects.
Resumo:
Issues of equity and inequity have always been part of employment relations and are a fundamental part of the industrial landscape. For example, in most countries in the nineteenth century and a large part of the twentieth century women and members of ethnic groups (often a minority in the workforce) were barred from certain occupations, industries or work locations, and received less pay than the dominant male ethnic group for the same work. In recent decades attention has been focused on issues of equity between groups, predominantly women and different ethnic groups in the workforce. This has been embodied in industrial legislation, for example in equal pay for women and men, and frequently in specific equity legislation. In this way a whole new area of law and associated workplace practice has developed in many countries. Historically, employment relations and industrial relations research has not examined employment issues disaggregated by gender or ethnic group. Born out of concern with conflict and regulation at the workplace, studies tended to concentrate on white, male, unionized workers in manufacturing and heavy industry (Ackers, 2002, p. 4). The influential systems model crafted by Dunlop (1958) gave rise to The discipline’s preoccupation with the ‘problem of order’ [which] ensures the invisibility of women, not only because women have generally been less successful in mobilizing around their own needs and discontents, but more profoundly because this approach identifies the employment relationship as the ultimate source of power and conflict at work (Forrest, 1993, p. 410). While ‘the system approach does not deliberately exclude gender . . . by reproducing a very narrow research approach and understanding of issues of relevance for the research, gender is in general excluded or looked on as something of peripheral interest’ (Hansen, 2002, p. 198). However, long-lived patterns of gender segregation in occupations and industries, together with discriminatory access to work and social views about women and ethnic groups in the paid workforce, mean that the employment experience of women and ethnic groups is frequently quite different to that of men in the dominant ethnic group. Since the 1980s, research into women and employment has figured in the employment relations literature, but it is often relegated to a separate category in specific articles or book chapters, with women implicitly or explicitly seen as the atypical or exceptional worker (Hansen, 2002; Wajcman, 2000). The same conclusion can be reached for other groups with different labour force patterns and employment outcomes. This chapter proposes that awareness of equity issues is central to employment relations. Like industrial relations legislation and approaches, each country will have a unique set of equity policies and legislation, reflecting their history and culture. Yet while most books on employment and industrial relations deal with issues of equity in a separate chapter (most commonly on equity for women or more recently on ‘diversity’), the reality in the workplace is that all types of legislation and policies which impact on the wages and working conditions interact, and their impact cannot be disentangled one from another. When discussing equity in workplaces in the twenty-first century we are now faced with a plethora of different terms in English. Terms used include discrimination, equity, equal opportunity, affirmative action and diversity with all its variants (workplace diversity, managing diversity, and so on). There is a lack of agreed definitions, particularly when the terms are used outside of a legislative context. This ‘shifting linguistic terrain’ (Kennedy-Dubourdieu, 2006b, p. 3) varies from country to country and changes over time even within the one country. There is frequently a division made between equity and its related concepts and the range of expressions using the term ‘diversity’ (Wilson and Iles, 1999; Thomas and Ely, 1996). These present dilemmas for practitioners and researchers due to the amount and range of ideas prevalent – and the breadth of issues that are covered when we say ‘equity and diversity in employment’. To add to these dilemmas, the literature on equity and diversity has become bifurcated: the literature on workplace diversity/management diversity appears largely in the business literature while that on equity in employment appears frequently in legal and industrial relations journals. Workplaces of the twenty-first century differ from those of the nineteenth and twentieth century not only in the way they deal with individual and group differences but also in the way they interpret what are fair and equitable outcomes for different individuals and groups. These variations are the result of a range of social conditions, legislation and workplace constraints that have influenced the development of employment equity and the management of diversity. Attempts to achieve employment equity have primarily been dealt with through legislative means, and in the last fifty years this legislation has included elements of anti-discrimination, affirmative action, and equal employment opportunity in virtually all OECD countries (Mor Barak, 2005, pp. 17–52). Established on human rights and social justice principles, this legislation is based on the premise that systemic discrimination has and/or continues to exist in the labour force and particular groups of citizens have less advantageous employment outcomes. It is based on group identity, and employment equity programmes in general apply across all workplaces and are mandatory. The more recent notions of diversity in the workplace are based on ideas coming principally from the USA in the 1980s which have spread widely in the Western world since the 1990s. Broadly speaking, diversity ideas focus on individual differences either on their own or in concert with the idea of group differences. The diversity literature is based on a business case: that is diversity is profitable in a variety of ways for business, and generally lacks a social justice or human rights justification (Burgess et al., 2009, pp. 81–2). Managing diversity is represented at the organizational level as a voluntary and local programme. This chapter discusses some major models and theories for equity and diversity. It begins by charting the history of ideas about equity in employment and then briefly discusses what is meant by equality and equity. The chapter then analyses the major debates about the ways in which equity can be achieved. The more recent ideas about diversity are then discussed, including the history of these ideas and the principles which guide this concept. The following section discusses both major frameworks of equity and diversity. The chapter then raises some ways in which insights from the equity and diversity literature can inform employment relations. Finally, the future of equity and diversity ideas is discussed.
Resumo:
Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.
Resumo:
Fundamental studies on constructability issue done in United States, United Kingdom and Australia illustrate capability of this concept to affect overall objectives of construction projects. It can result in significant cost and time savings and improved final quality by consideration of construction contractors experiences during conceptual planning and design phases. As intensive as these studies are, they do not attempt to investigate importance of these activities in order to find each of their specific barriers separately. This research explores Constructability Activities (CAs) in all project phases separately based on amount of contractors involvement in each activity and also amount of gap that exists between target and actual effects of each activity on achieving the final objectives of building projects in Malaysia. It ends to development of Critical Constructability Activities (CCAs). This research is crucial to gaining a better understanding of CCAs which are caused based on contractors higher participation percentage and larger gaps between their target and actual effects on achieving the final aims of the project. This research highlights the need to overcome barriers of CAs implementation in building projects. This study recommends construction stakeholders to concentrate more on CCAs in order to achieve the overall objectives of the project much faster and easier.
Resumo:
Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.
Resumo:
Purpose: Experimental measurements have been made to investigate meaning of the change in voltage for the pulse gas metal arc welding (GMAW-P) process operating under different drop transfer modes. Design/methodology/approach: Welding experiments with different values of pulsing parameter and simultaneous recording of high speed camera pictures and welding signals (such as current and voltage) were used to identify different drop transfer modes in GMAW-P. The investigation is based on the synchronization of welding signals and high speed camera to study the behaviour of voltage signal under different drop transfer modes. Findings: The results reveal that the welding arc is significantly affected by the molten droplet detachment. In fact, results indicate that sudden increase and drop in voltage just before and after the drop detachment can be used to characterize the voltage behaviour of different drop transfer mode in GMAW-P. Research limitations/implications: The results show that voltage signal carry rich information about different drop transfer occurring in GMAW-P. Hence it’s possible to detect different drop transfer modes. Future work should concentrate on development of filters for detection of different drop transfer modes. Originality/value: Determination of drop transfer mode with GMAW-P is crucial for the appropriate selection of pulse welding parameters. As change in drop transfer mode results in poor weld quality in GMAW-P, so in order to estimate the working parameters and ensure stable GMAW-P understanding the voltage behaviour of different drop transfer modes in GMAW-P will be useful. However, in case of GMAW-P hardly any attempt is made to analyse the behaviour of voltage signal for different drop transfer modes. This paper analyses the voltage signal behaviour of different drop transfer modes for GMAW-P.
Resumo:
For marginalised secondary school students, mainstream education may no longer appear to be an inviting place. While proposed solutions to problems of disengagement and marginalisation appear to concentrate on finding ways to coerce students back to mainstream education through, for example, ‘learning or earning’ legislation, this article suggests that more effective solutions may be found by engaging with the students in the margins that they occupy. Following discussion of key influences on student disengagement and a theory of imaginations, a ‘students-as-researchers’ (SaR) model of working with young people is discussed to demonstrate that, through the scaffolded application of active imagination, it is possible for such students to identify and create their own connections to the mainstream. The SaR model is illustrated through reference to groups of disaffected high school students who participated in an action research project to investigate apparent low aspiration for tertiary education among their peers at schools serving low-income communities in Queensland, Australia.
Resumo:
The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.
Resumo:
In this article I examine how artists with disabilities use public-space performance to encourage passersby to reflect on the construction of public discourses about disability – and, therefore, the construction of publics that are potentially inclusive of people with disabilities. I concentrate on British storyteller, artist, filmmaker and activist Liz Crow's Resistance on the Plinth, one of four pieces Crow has produced over the past three years as part of the Resistance series, an examination of the Nazi regime's Aktion T4 programme, which resulted in the mass murder of a quarter of a million people with disabilities. Created in August 2009 as part of Antony Gormley's One & Other public art project, the piece featured Crow dressed in a Nazi uniform and seated in a wheelchair on the Fourth Plinth in London's Trafalgar Square. For Crow – who creates work in a British context where public debate about the eugenics of genetic testing, euthanasia and assisted suicide is prevalent in the media – the Nazi atrocity is still rich in confronting imagery, resonant and relevant in a contemporary context. In this article, I consider the challenges that Gormley's extremely public One & Other presented for professional artists like Crow, who are committed to intervening in public perceptions of identity, community and culture. I describe the structural choices Crow made to provoke debate about the cultural logics embodied in the image she presented, and analyse some of the spectatorial responses from online forums such as the One & Other website, Facebook and Twitter immediately following the event.