887 resultados para Aparell locomotor
Resumo:
Study design: Experimental, controlled, animal study. Objectives: To evaluate the effect of GM1 ganglioside, hyperbaric oxygen and both in combination, in the treatment of experimental spinal cord lesions in rats. Setting: Brazil. Methods: Thirty-two Wistar rats with spinal cord lesions were divided into four groups: one group received GM1 ganglioside, one was submitted to hyperbaric oxygen therapy (HBOT), the third received both treatments and the fourth received no treatment (control). Results: There were no significant differences between the groups in the histological analysis, for any of the variables (necrosis, hemorrhage, hyperemia, cystic degeneration, P>0.06). Neither were there any significant differences in the comparison of left and right sides in the functional tests (P>0.06 for all). No significant differences were found in the locomotor ratings, in the comparison of groups at 2, 7, 21 and 28 days after the surgical procedure. However, in the evaluation on day 14, group 3, which received the combined therapy, showed a significantly higher Basso Beattie and Bresnahan score than the other groups (P = 0.015). Conclusion: The therapeutic effect of GM1 in locomotor evaluation of rats submitted to spinal cord lesion is anticipated by HBOT. Spinal Cord (2010) 48, 808-813; doi:10.1038/sc.2010.37; published online 27 April 2010
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
Study design: Single-blind randomized, controlled clinical study. Objectives: To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Setting: Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Methods: Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. Results: There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Conclusion: Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries. Spinal Cord (2011) 49, 1001-1007; doi:10.1038/sc.2011.37; published online 3 May 2011
Resumo:
The effects of microinjection of the nitric oxide (NO) precursor L-arginine (L-Arg), the NO synthase (NOS) inhibitors N-methyl-L-arginine (L-NAME) and 7-nitroindazole (7-NI), and the cyclic guanosine 3`,5`-monophosphate (cGMP) analog 8-Br-cGMP into the dorsal raphe nucleus (DRN) were assessed in rats using the elevated plus maze (EPM) and the forced swim test (FST). L-Arg (100 and 200 nmol) produced an anxiolytic-like effect in the EPM. 8-Br-cGMP (25 and 50 nmol) dose-dependently increased locomotor activity. In the FST, antidepressant-like effects were produced by L-Arg (50 and 100 nmol) and 8-Br-cGMP (12.5 and 25 nmol). Dual effects were observed with NOS inhibitors L-NAME and 7-NI in both the EPM and FST. While low doses of L-NAME (25 nmol) or 7-NI (1 nmol) induced a selective increase in EPM open arm exploration and a decrease in immobility time in the FST, high doses (L-NAME 400 nmol, 7-NI 10 nmol) decreased locomotor activity. These results show that interference with NO-mediated neurotransmission in the DRN induced significant and complex motor and emotional effects. Further studies are needed to elucidate the mechanisms involved in these effects. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Previous evidence has shown that facilitation of GABA/benzodiazepine-mediated neurotransmission in the ventromedial hypothalamus (VMH) inhibits both escape and inhibitory avoidance responses generated in the elevated T-maze test of anxiety (ETM). These defensive behaviors have been associated with panic and generalized anxiety, respectively. Aside from GABA/benzodiazepine receptors, the VMH also contains a significant number of serotonin (5-HT) receptors, including 1A, 2A and 2C subtypes. The purpose of the present study was to investigate the effect of the activation of 5-HT(1A) and 5-HT(2A/2C) receptors in the VMH on defensive behavioral responses in rats submitted to the ETM. For that, male Wistar rats were treated intra-VMH with the 5-HT(1A) agonist 8-OH-DPAT, with the 5-HT(2A/2C) agonist DOI, with the 5-HT(2C) selective agonist MK-212, or with the 5-HT(2A/2C) antagonist ketanserin and 10 min after were submitted to the ETM. Results showed that both DOI and MK-212 significantly decreased avoidance measurements, an anxiolytic-like effect, without altering escape. 8-OH-DPAT and ketanserin were without effect, although the last drug attenuated the effects of DOI. None of the drugs altered locomotor activity in an open field. These results suggest that 5-HT(2A/2C) receptors of the VMH are involved in the regulation of inhibitory avoidance and might be of relevance to the physiopathology of generalized anxiety. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
A growing body of evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of major depression. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with harmine and imipramine in rats. To this aim, rats were treated for 14 days once a day with harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) and then subjected to the forced swimming and open-field tests. Harmine and imipramine, at all doses tested, reduced immobility time of rats compared with the saline group. Imipramine increased the swimming time at 20 and 30 mg/kg and harmine increased swimming time at all doses. The climbing time increased in rats treated with imipramine (10 and 30 mg/kg) and harmine (5 and 10 mg/kg), without affecting spontaneous locomotor activity. Brain-derived neurotrophic factor (BDNF) hippocampal levels were assessed in imipramine and harmine-treated rats by ELISA sandwich assay. Interestingly, chronic administration of harmine at the higher doses (10 and 15 mg/kg), but not imipramine, increased BDNF protein levels in rat hippocampus. Finally, these findings further support the hypothesis that harmine could bring about behavior and molecular effects, similar to antidepressants drugs.
Resumo:
The cellular prion protein (PrP(c)) has been implicated with the modulation of neuronal apoptosis, adhesion, neurite outgrowth and maintenance which are processes involved in the neocortical development. Malformations of cortical development (MCD) are frequently associated with neurological conditions including mental retardation, autism, and epilepsy. Here we investigated the behavioral performance of female adult PrP(c)-null mice (Prnp(%)) and their wild-type controls (Prnp(+/+)) presenting unilateral polymicrogyria, a MCD experimentally induced by neonatal freeze-lesion in the right hemisphere. injured mice from both genotypes presented similar locomotor activity but Prnp(%) mice showed a tendency to increase anxiety-related responses when compared to Prnp(+/+) animals. Additionally, injured Prnp(%) mice have a poorer performance in the social recognition task than sham-operated and Prnp(%) injured ones. Moreover the step-down inhibitory avoidance task was not affected by the procedure or the genotype of the animals. These data suggest that the genetic deletion of PrP(c) confers increased susceptibility to short-term social memory deficits induced by neonatal freezing model of polymicrogyria in mice. (C) 2008 Published by Elsevier B.V.
Resumo:
Cohabitation for 14 days with an Ehrlich tumor-bearing mice was shown, among others, to increase locomotor activity, and hypothalamic noradrenaline levels and turnover, to decrease the innate immune responses and animal resistance to tumor growth. The present experiment was designed to access the relevance of tactile, olfactory, and visual communication to the neuroimmune changes induced by cohabitation with a tumor-bearing partner. Mice that were not allowed to perceive odor cues from their sick partners presented no alterations in neutrophil activity, a fact not observed after visual deprivation and physical isolation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. The present results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. (C) 2010 Published by Elsevier B.V.
Resumo:
Ivermectin (IVM) is an antiparasitic drug, widely used in domestic animals. In mammals, IVM act as a GABA agonist. This neurotransmitter has an important role in the regulation of sexual behavior. Thus, this study sought to investigate the effects of various medically relevant doses IVM on the sexual behavior of male rats. In particular, we also wished to examine if previous sexual experience modulated responses to IVM. In the first experiment, the sexual behavior of inexperienced male rats was analyzed after they received 0.2, 0.6, 1.0 or 2.0 mg/kg IVM, 15 mm prior to behavioral testing. In the second experiment, the effects of four previous sexual experiences on IVM treated rats (1.0 or 2.0 mg/kg, 15 min prior to the 5th session) were assessed. The standard therapeutic dose (0.2 mg/kg) did not impair the sexual behavior of inexperienced male rats. At a more concentrated dose (0.6 mg/kg), which is still within the therapeutic range, the appetitive phase of sexual behavior of inexperienced male rats was impaired. Likewise, 1.0 mg/kg impaired the appetitive phase. Previous sexual experience blocked almost entirely this sexual impairment, suggesting that previous sexual experience exerts a positive effect in attenuating the sexual impairment produced by IVM treatment. Therefore, the standard therapeutic dose of IVM can be used without producing side effects on sexual behavior. Use of more concentrated therapeutic doses is not recommended during reproductive periods, unless the animals have had previous sexual experience. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The moxidectin (MXD) is an antiparasitic drug used in domestic animals. The mechanism of action, in mammals, involves GABA, a neurotransmitter with an important role in the sexual behavior control. Presently, the effects of 0.2 mg/kg therapeutic dose were studied on sexual behavior, sexual motivation, penile erection and central GABA levels. Sexual behavior results showed increased latencies to the first mount and intromission as well as in inter-intromission interval; a reduction in total mounts was detected on the drug post-treatment. No difference was observed between sexual motivation of control and experimental animals. MXD treatment reduced penile erection and hypothalamic GABA levels. The results suggest that MXD reduced sexual behavior and penile erection by an action on the hypothalamic GABA system. Probably, the lack of effects in the motivational test and the increased mount and intromission latencies as well as decreased total mounts could be explained as a consequence of reduced male rat erection process. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chronic L-DOPA pharmacotherapy in Parkinson`s disease is often, accompanied by the development of abnormal and excessive movements known as L-DOPA-induced dyskinesia. Rats with 6-hydroxydopamine lesion of dopaminergic neurons chronically treated with L-DOPA develop a rodent analog of this dyskinesia characterized by severe axial, limb, locomotor and orofacial abnormal involuntary movements. While the mechanisms by which these effects occur are not clear, they may involve the nitric oxide system. In the present study we investigate if nitric oxide synthase inhibitors can prevent dyskinesias induced by repeated administration Of L-DOPA in rats with unilateral 6-hydroxydopamine lesion. Chronic L-DOPA (high fixed dose, 100 mg/kg; low escalating dose, 10-30 mg/kg) treatment induced progressive dyskinesia changes. Two nitric oxide synthase inhibitors, 7-nitroindazole (1-30 mg/kg) and NG-nitro-L-arginine (50 mg/kg), given 30 min before L-DOPA, attenuate dyskinesia. 7-Nitroindazolee also improved motor performance of these animals in the rota-rod test. These results suggest the possibility that nitric oxide synthase inhibitors may be useful to treat L-DOPA.-Induced dyskinesia. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Spinal cord injury (SCI) causes motor and sensory deficits that impair functional performance, and significantly impacts life expectancy and quality. Animal models provide a good opportunity to test therapeutic strategies in vivo. C57BL/6 mice were subjected to laminectomy at T9 and compression with a vascular clip (30 g force, 1 min). Two groups were analyzed: injured group (SCI, n = 33) and laminectomy only (Sham, n = 15). Locomotor behavior (Basso mouse scale-BMS and global mobility) was assessed weekly. Morphological analyses were performed by LM and EM. The Sham group did not show any morphofunctional alteration. All SCI animals showed flaccid paralysis 24 h after injury. with subsequent improvement. The BMS score of the SCI group improved until the intermediate phase (2.037 +/- 1.198): the Sham animals maintained the highest BMS score (8.981 +/- 0.056). p < 0.001 during the entire time. The locomotor speed was slower in the SCI animals (5.581 +/- 0.871) than in the Sham animals (15.80 +/- 1.166), p < 0.001. Morphological analysis of the SCI group showed, in the acute phase, edema, hemorrhage, multiple cavities, fiber degeneration, cell death and demyelination. In the chronic phase we observed glial scarring, neuron death, and remyelination of spared axons by oligodendrocytes and Schwann cells. In conclusion, we established a simple, reliable, and inexpensive clip compression model in mice, with functional and morphological reproducibility and good validity. The availability of producing reliable injuries with appropriate outcome measures represents great potential for studies involving cellular mechanisms of primary injury and repair after traumatic SCI. (C) 2008 Elsevier B.V. All rights reserved.