986 resultados para Antimicrobial Peptide Hepcidin
Resumo:
We report the cloning of a novel antimicrobial peptide gene, termed rtCATH_1, found in the rainbow trout, Oncorhynchus mykiss. The predicted 216-residue rtCATH_1 prepropeptide consists of three domains: a 22-residue signal peptide, a 128-residue cathelin-like region containing two identifiable cathelicidin family signatures, and a predicted 66-residue C-terminal cationic antimicrobial peptide. This predicted mature peptide was unique in possessing features of different known (mammalian) cathelicidin subgroups, such as the cysteine-bridged family and the specific amino-acid-rich family. The rtCATH_1 gene comprises four exons, as seen in all known mammalian cathelicidin genes, and several transcription factor binding sites known to be of relevance to host defenses were identified in the 5' flanking region. By Northern blot analysis, the expression of rtCATH_1 was detected in gill, head kidney, and spleen of bacterially challenged fish. Primary cultures of head kidney leukocytes from rainbow trout stimulated with lipopolysaccharide or poly(I (.) C) also expressed riCATH_1. A 36-residue peptide corresponding to the core part of the fish cathelicidin was chemically synthesized and shown to exhibit potent antimicrobial activity and a low hemolytic effect. Thus, rtCATH_1 represents a novel antimicrobial peptide gene belonging to the cathelicidin family and may play an important role in the innate immunity of rainbow trout.
Resumo:
A new antimicrobial protein gene of the anti-lipopolysaccharide factor family (tentatively named as ALFFc) has been cloned from hemocytes of the Chinese shrimp Fenneropenaeus chinensis by rapid amplification of 3' and 5' complementary DNA ends with polymerase chain reaction. The full-length complementary DNA of ALFFc consists of 600 bp with a 369-bp open reading frame, encoding 123 amino acids. The deduced peptide contains a putative signal peptide of 25 amino acids and mature peptide of 98 amino acids. The molecular mass of the deduced mature peptide is 13799.16 Da. It is highly cationic, with a theoretical pI of 10.3. The deduced amino acid sequence of ALFFc showed 56% homology with sequences of Tachypleus tridentatus and L. polyhemus. The tissue expression profile of this gene was studied by Northern blot, and ALFFc transcripts were mainly detected in hemocytes, gill, and intestine. RNA in situ hybridization showed that ALFFc was constitutively expressed in hemocytes. Capillary electrophoresis reverse transcriptase PCR was used to quantify the variation of messenger RNA transcription level during the artificial infection process with Vibrio anguillarum. Significant enhancement of ALFFc transcription appeared during the first 24 hours in response to Vibrio infection. These results provide useful information for understanding the function of ALFFc in shrimp.
Resumo:
Serine proteases play critical roles in a variety of invertebrate immune defense responses, including hemolymph coagulation, antimicrobial peptide synthesis, and melanization. The first mollusk serine protease with clip-domain (designated CFSP1) cDNA was obtained from the scallop Chlamys farreri challenged with Vibrio anguillarum by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the C. farreri serine protease was 1211 bp, consisting of a 5-terminal untranslated region (UTR) of 72 bp, a 3'-terminal UTR of 77 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1062 bp. The CFSP1 cDNA encoded a polypeptide of 354 amino acids with a putative signal peptide of 19 amino acids and a mature protein of 335 amino acids. The deduced amino acid sequence of CFSP1 contained an amino-terminal clip domain, a low complexity region, and a carboxyl-terminal serine protease domain. CFSP1 mRNA was mainly expressed constitutively in the hemocytes and was up-regulated and increased 2.9- and 1.9-fold at 16 h after injury and injection of bacteria. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The ovary of triploid shrimp Fenneropenaeus chinensis was apparently impaired compared to that of the diploid shrimp at the same age. Therefore triploid shrimp ovary is possible to be taken as a model to understand the mechanism of ovary development of shrimp compared to that of the ovary of diploid shrimp at the same age. In the present study, a suppression subtractive hybridization (SSH) technique was applied to identify differentially expressed genes in the ovary between diploid and triploid shrimp. For the forward library (RNA from the ovary of triploid shrimp as the tester), 54 genes were identified. For the reverse library (RNA from the ovary of diploid shrimp as the tester), 16 genes were identified. The identified genes encoded proteins with multiple functions, including extracellular matrix components, cytoskeleton, cell growth and death, metabolism, genetic information processing, signal transduction/transport or immunity related proteins. Eleven differentially expressed genes were selected to be confirmed in the ovaries of triploid and diploid shrimp by semi-quantitative RT-PCR. Genes encoding spermatogonial stem-cell renewal factor, cytochrome c oxidase subunits I and II, clottable protein, antimicrobial peptide and transposase showed up-regulated expressions in the ovary of triploid shrimp. Genes encoding tubulin, cellular apoptosis susceptibility protein, farnesoic acid O-methyltransferase, thrombospondin and heat shock protein 90 genes showed higher expressions in the ovary of diploid shrimp. The differential expressions of the above genes are suggested to be related to the ovary development of shrimp. It will provide a new clue to uncover the molecular mechanisms underlying the ovarian development in penaeid shrimp. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Cronobacter spp. are opportunistic pathogens which can be isolated from a wide variety of foods and environments. They are Gram negative, motile, non-spore forming, peritrichous rods of the Enterobacteriaceae family. This food-borne pathogen is associated with the ingestion of contaminated infant milk formula (IMF), causing necrotizing enterocolitis, sepsis and meningitis in neonatal infants. The work presented in this thesis involved the investigation and characterisation of a bank of Cronobacter strains for their ability to tolerate physiologically relevant stress conditions that are commonly encountered in the gastrointestinal tract. While all strains were able to endure the suboptimal conditions tested, noteworthy variations were observed between strains. A collection of these strains were Lux-tagged to determine if their growth could be tracked in IMF by measuring bioluminescence. The resulting strains could be easily and reproducibly monitored in real time by measuring light emission. Following this a transposon mutagenesis library was created in one of the Lux-tagged strains of Cronobacter sakazakii. This library was screened for mutants with affected growth in milk. The majority of mutants identified were associated with amino acid metabolism. The final section of this thesis identified genes involved in the tolerance of C. sakazakii to the milk derived antimicrobial peptide, Lactoferricin B (Lfcin B). This was achieved by creating a transposon mutagenesis library in C. sakazakii and screening for mutants with increased susceptibility to Lfcin B. Overall this thesis demonstrates the variation between Cronobacter strains. It also identifies genes required for growth of the bacteria in milk, as well as genes needed for antimicrobial peptide tolerance.
Resumo:
In recent years, the potential to positively modulate human health through dietary approaches has received considerable attention. Bioactive peptides which are released during the hydrolysis or fermentation of food proteins or following digestion may exert beneficial physiological effects in vivo. The aim of this work was to isolate, characterise and evaluate Angiotensin-І-converting enzyme (ACE-І) inhibitory, antimicrobial and antioxidant peptides from the bovine myofibrillar proteins actin and myosin. In order to generate these peptides, the myofibrillar proteins actin and myosin were hydrolysed with digestive enzymes pepsin, trypsin and α-chymotrypsin, or with the industrial thermolysin-like enzyme “Thermoase”, Amano Inc. It was found that each hydrolysate generated contained peptides which possessed ACE inhibitory, antioxidant and antimicrobial activity. The peptides responsible in part for the observed ACE inhibitory, antioxidant and antimicrobial activity of a number of hydrolysates were isolated using the method of RP-HPLC and the bioactive peptides contained within each active fraction was determined using either MALDI-TOF MS/MS or N-terminal peptide sequencing. During the course of this thesis six ACE inhibitory and five antimicrobial peptides were identified. It was determined that the reported antioxidant activity was a direct result of a number of peptides working in synergy with each other. The IC50 values of the six ACE inhibitory peptides ranged in values of 6.85 to 75.7 µM which compare favourably to values previously reported for other food derived ACE inhibitory peptides, particularly the well known milk peptides IPP and VPP, IC50 values of 5 and 9 µM respectively. All five antimicrobial peptides identified in this thesis displayed activity against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria innocua with MIC values ranging from 0.625 to10 mM. The activity of each antimicrobial peptide was strain specific. Furthermore the role and importance of charged amino acids to the activity of antimicrobial peptides was also determined. Generally the removal of charged amino acids from the sequence of antimicrobial peptides resulted in a loss of antimicrobial activity. In conclusion, this thesis revealed that a range of bioactive peptides exhibiting ACE inhibitory, antioxidant and antimicrobial activities were encrypted in bovine myofibrillar proteins that could be released using digestive and industrial enzymes. Finally enzymatic hydrolysates of muscle proteins could potentially be incorporated into functional foods; however, the potential health benefits would need to be proven in human clinical studies.
Resumo:
This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.
Resumo:
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.
Resumo:
Antimicrobial peptides represent the most characterized and diverse class of peptides within the defensive skin secretions of anuran amphibians. With an ever expanding database of primary structures, the current accepted rules for nomenclature have become increasingly difficult to apply to peptides whose primary structural attributes are either unique or that fall between those that define existing groups. An additional factor that adds to the confusion is the regular re-classification or revision of existing taxa. In the present study, we have identified five new antimicrobial peptide homologs in the defensive skin secretion of the Chinese piebald odorous frog, Huia schmackeri (formerly Rana (Odorrana) schmackeri), by cloning of their respective biosynthetic precursors. As these peptides are obvious homologs of the brevinin-1 and brevinin-2 families we have named these in accordance: (1) brevinin-1HS1, (2) brevinin-2HS1, (3) brevinin-2HS2, (4) brevinin-2HS3 and (5) brevinin-1HS2. The reasons for adopting these names are discussed. It is clear that with an ever-increasing number of amphibian skin antimicrobial peptides appearing in the literature that a consistent nomenclature scheme needs to be established.
Resumo:
By integrating systematic peptidome and transcriptome studies of the defensive skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas, we have identified novel members of three previously described antimicrobial peptide families, a 27-mer dermaseptin-related peptide (designated DRP-AC4), a 33-mer adenoregulin-related peptide (designated ARP-AC1) and most unusually, a 27-mer caerin-related peptide (designated CRP-AC1). While dermaseptin and adenoregulin were originally isolated from phyllomedusine leaf frogs, the caerins, until now. had only been described in Australian frogs of the genus, Litoria. Both the dermaseptin and adenoregulin were C-terminally amidated and lacked the C-terminal tripeptide of the biosynthetic precursor sequence. In contrast, the caerin-related peptide, unlike the majority of Litoria analogs. was not C-terminally amidated. The present data emphasize the need for structural characterization of mature peptides to ensure that unexpected precursor cleavages and/or post-translational modifications do not produce mature peptides that differ in structure to those predicted from cloned biosynthetic precursor cDNA. Additionally, systematic study of the secretory peptidome can produce unexpected results such as the CRP described here that may have phylogenetic implications. It is thus of the utmost importance in the functional evaluation of novel peptides that the primary structure of the mature peptide is unequivocally established - something that is often facilitated by cloning biosynthetic precursor cDNAs but obviously not reliable using such data alone. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
P>Burkholderia cenocepacia is an environmental bacterium causing serious human opportunistic infections and is extremely resistant to multiple antibiotics including antimicrobial peptides, such as polymyxin B (PmB). Extreme antibiotic resistance is attributed to outer membrane impermeability ('intrinsic' resistance). Previous work showed that production of full-length lipopolysaccharide (LPS) prevents surface binding of PmB. We hypothesized that two tiers of resistance mechanisms rendering different thresholds of PmB resistance exist in B. cenocepacia. To test this notion, candidate genes were mutated in two isogenic strains expressing full-length LPS or truncated LPS devoid of heptose ('heptoseless LPS') respectively. We uncovered various proteins required for PmB resistance only in the strain with heptoseless LPS. These proteins are not involved in preventing PmB binding to whole cells or permeabilization of the outer membrane. Our results support a two-tier model of PmB resistance in B. cenocepacia. One tier sets a very high threshold mediated by the LPS and the outer membrane permeability barrier. The second tier sets a lower threshold that may play a role in PmB resistance only when outer membrane permeability is compromised. This model may be of general applicability to understanding the high antimicrobial peptide resistance of environmental opportunistic pathogens.
Resumo:
The Yersinia pseudotuberculosis chromosome contains a seven-gene polycistronic unit (the pmrF operon) whose products share extensive homologies with their pmrF counterparts in Salmonella enterica serovar Typhimurium (S. typhimurium), another Gram-negative bacterial enteropathogen. This gene cluster is essential for addition of 4-aminoarabinose to the lipid moiety of LPS, as demonstrated by MALDI-TOF mass spectrometry of lipid A from both wild-type and pmrF-mutated strains. As in S. typhimurium, 4-aminoarabinose substitution of lipid A contributes to in vitro resistance of Y. pseudotuberculosis to the antimicrobial peptide polymyxin B. Whereas pmrF expression in S. typhimurium is mediated by both the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems, it appears to be PmrA-PmrB-independent in Y. pseudotuberculosis, with the response regulator PhoP interacting directly with the pmrF operon promoter region. This result reveals that the ubiquitous PmrA-PmrB regulatory system controls different regulons in distinct bacterial species. In addition, pmrF inactivation in Y. pseudotuberculosis has no effect on bacterial virulence in the mouse, again in contrast to the situation in S. typhimurium. The marked differences in pmrF operon regulation in these two phylogenetically close bacterial species may be related to their dissimilar lifestyles.
Resumo:
The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.
Resumo:
Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.