991 resultados para Anisosmotic extracellular regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pore-forming α subunit of large conductance voltage- and Ca2+-sensitive K (MaxiK) channels is regulated by a β subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming α subunit necessary for β-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to β-subunit modulation, and analyzed the topology of the α subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel α subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1–S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers β-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The product of the c-abl protooncogene is a nonreceptor tyrosine kinase found in both the cytoplasm and the nucleus. We report herein that cell adhesion regulates the kinase activity and subcellular localization of c-Abl. When fibroblastic cells are detached from the extracellular matrix, kinase activity of both cytoplasmic and nuclear c-Abl decreases, but there is no detectable alteration in the subcellular distribution. Upon adhesion to the extracellular matrix protein fibronectin, a transient recruitment of a subset of c-Abl to early focal contacts is observed coincident with the export of c-Abl from the nucleus to the cytoplasm. The cytoplasmic pool of c-Abl is reactivated within 5 min of adhesion, but the nuclear c-Abl is reactivated after 30 min, correlating closely with its return to the nucleus and suggesting that the active nuclear c-Abl originates in the cytoplasm. In quiescent cells where nuclear c-Abl activity is low, the cytoplasmic c-Abl is similarly regulated by adhesion but the nuclear c-Abl is not activated upon cell attachment. These results show that c-Abl activation requires cell adhesion and that this tyrosine kinase can transmit integrin signals to the nucleus where it may function to integrate adhesion and cell cycle signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kss1, a yeast mitogen-activated protein kinase (MAPK), in its unphosphorylated (unactivated) state binds directly to and represses Ste12, a transcription factor necessary for expression of genes whose promoters contain filamentous response elements (FREs) and genes whose promoters contain pheromone response elements (PREs). Herein we show that two nuclear proteins, Dig1 and Dig2, are required cofactors in Kss1-imposed repression. Dig1 and Dig2 cooperate with Kss1 to repress Ste12 action at FREs and regulate invasive growth in a naturally invasive strain. Kss1-imposed Dig-dependent repression of Ste12 also occurs at PREs. However, maintenance of repression at PREs is more dependent on Dig1 and/or Dig2 and less dependent on Kss1 than repression at FREs. In addition, derepression at PREs is more dependent on MAPK-mediated phosphorylation than is derepression at FREs. Differential utilization of two types of MAPK-mediated regulation (binding-imposed repression and phosphorylation-dependent activation), in combination with distinct Ste12-containing complexes, contributes to the mechanisms by which separate extracellular stimuli that use the same MAPK cascade can elicit two different transcriptional responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finely tuned Ca2+ signaling system is essential for cells to transduce extracellular stimuli, to regulate growth, and to differentiate. We have recently cloned CaT-like (CaT-L), a highly selective Ca2+ channel closely related to the epithelial calcium channels (ECaC) and the calcium transport protein CaT1. CaT-L is expressed in selected exocrine tissues, and its expression also strikingly correlates with the malignancy of prostate cancer. The expression pattern and selective Ca2+ permeation properties suggest an important function in Ca2+ uptake and a role in tumor progression, but not much is known about the regulation of this subfamily of ion channels. We now demonstrate a biochemical and functional mechanism by which cells can control CaT-L activity. CaT-L is regulated by means of a unique calmodulin binding site, which, at the same time, is a target for protein kinase C-dependent phosphorylation. We show that Ca2+-dependent calmodulin binding to CaT-L, which facilitates channel inactivation, can be counteracted by protein kinase C-mediated phosphorylation of the calmodulin binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eye development in both invertebrates and vertebrates is regulated by a network of highly conserved transcription factors. However, it is not known what controls the expression of these factors to regulate early eye formation and whether transmembrane signaling events are involved. Here we establish a role for signaling via a member of the frizzled family of receptors in regulating early eye development. We show that overexpression of Xenopus frizzled 3 (Xfz3), a receptor expressed during normal eye development, functions cell autonomously to promote ectopic eye formation and can perturb endogenous eye development. Ectopic eyes obtained with Xfz3 overexpression have a laminar organization similar to that of endogenous eyes and contain differentiated retinal cell types. Ectopic eye formation is preceded by ectopic expression of transcription factors involved in early eye development, including Pax6, Rx, and Otx2. Conversely, targeted overexpression of a dominant-negative form of Xfz3 (Nxfz3), consisting of the soluble extracellular domain of the receptor, results in suppression of endogenous Pax6, Rx, and Otx2 expression and suppression of endogenous eye development. This effect can be rescued by coexpression of Xfz3. Finally, overexpression of Kermit, a protein that interacts with the C-terminal intracellular domain of Xfz3, also blocks endogenous eye development, suggesting that signaling through Xfz3 or a related receptor is required for normal eye development. In summary, we show that frizzled signaling is both necessary and sufficient to regulate eye development in Xenopus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-linking of the high-affinity IgE receptor (FcɛRI) on mast cells with IgE and multivalent antigen triggers mitogen-activated protein (MAP) kinase activation and cytokine gene expression. We report here that MAP kinase kinase 4 (MKK4) gene disruption does not affect either MAP kinase activation or cytokine gene expression in response to cross-linking of FcɛRI in embryonic stem cell-derived mast cells. MKK7 is activated in response to cross-linking of FcɛRI, and this activation is inhibited by MAP/ERK kinase (MEK) kinase 2 (MEKK2) gene disruption. In addition, expression of kinase-inactive MKK7 in the murine mast cell line MC/9 inhibits c-Jun NH2-terminal kinase (JNK) activation in response to cross-linking of FcɛRI, whereas expression of kinase-inactive MKK4 does not affect JNK activation by this stimulus. However, FcɛRI-induced activation of the tumor necrosis factor-α (TNF-α) gene promoter is not affected by expression of kinase-inactive MKK7. We describe an alternative pathway by which MEKK2 activates MEK5 and big MAP kinase1/extracellular signal-regulated kinase 5 in addition to MKK7 and JNK, and interruption of this pathway inhibits TNF-α promoter activation. These findings suggest that JNK activation by antigen cross-linking is dependent on the MEKK2-MKK7 pathway, and cytokine production in mast cells is regulated in part by the signaling complex MEKK2-MEK5-ERK5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol–anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K+. Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1–occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progression of animal life from the paleozoic ocean to rivers and diverse econiches on the planet's surface, as well as the subsequent reinvasion of the ocean, involved many different stresses on ionic pattern, osmotic pressure, and volume of the extracellular fluid bathing body cells. The relatively constant ionic pattern of vertebrates reflects a genetic "set" of many regulatory mechanisms--particularly renal regulation. Renal regulation of ionic pattern when loss of fluid from the body is disproportionate relative to the extracellular fluid composition (e.g., gastric juice with vomiting and pancreatic secretion with diarrhea) makes manifest that a mechanism to produce a biologically relatively inactive extracellular anion HCO3- exists, whereas no comparable mechanism to produce a biologically inactive cation has evolved. Life in the ocean, which has three times the sodium concentration of extracellular fluid, involves quite different osmoregulatory stress to that in freshwater. Terrestrial life involves risk of desiccation and, in large areas of the planet, salt deficiency. Mechanisms integrated in the hypothalamus (the evolutionary ancient midbrain) control water retention and facilitate excretion of sodium, and also control the secretion of renin by the kidney. Over and above the multifactorial processes of excretion, hypothalamic sensors reacting to sodium concentration, as well as circumventricular organs sensors reacting to osmotic pressure and angiotensin II, subserve genesis of sodium hunger and thirst. These behaviors spectacularly augment the adaptive capacities of animals. Instinct (genotypic memory) and learning (phenotypic memory) are melded to give specific behavior apt to the metabolic status of the animal. The sensations, compelling emotions, and intentions generated by these vegetative systems focus the issue of the phylogenetic emergence of consciousness and whether primal awareness initially came from the interoreceptors and vegetative systems rather than the distance receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conditioning of culture medium by the production of growth-regulatory substances is a well-established phenomenon with eukaryotic cells. It has recently been shown that many prokaryotes are also capable of modulating growth, and in some cases sensing cell density, by production of extracellular signaling molecules, thereby allowing single celled prokaryotes to function in some respects as multicellular organisms. As Escherichia coli shifts from exponential growth to stationary growth, many changes occur, including cell division leading to formation of short minicells and expression of numerous genes not expressed in exponential phase. An understanding of the coordination between the morphological changes associated with cell division and the physiological and metabolic changes is of fundamental importance to understanding regulation of the prokaryotic cell cycle. The ftsQA genes, which encode functions required for cell division in E. coli, are regulated by promoters P1 and P2, located upstream of the ftsQ gene. The P1 promoter is rpoS-stimulated and the second, P2, is regulated by a member of the LuxR subfamily of transcriptional activators, SdiA, exhibiting features characteristic of an autoinduction (quorum sensing) mechanism. The activity of SdiA is potentiated by N-acyl-homoserine lactones, which are the autoinducers of luciferase synthesis in luminous marine bacteria as well as of pathogenesis functions in several pathogenic bacteria. A compound(s) produced by E. coli itself during growth in Luria Broth stimulates transcription from P2 in an SdiA-dependent process. Another substance(s) enhances transcription of rpoS and (perhaps indirectly) of ftsQA via promoter P1. It appears that this bimodal control mechanism may comprise a fail-safe system, such that transcription of the ftsQA genes may be properly regulated under a variety of different environmental and physiological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The opportunistic human pathogen Pseudomonas aeruginosa produces a variety of virulence factors, including exotoxin A, elastase, alkaline protease, alginate, phospholipases, and extracellular rhamnolipids. The previously characterized rhlABR gene cluster encodes a regulatory protein (RhlR) and a rhamnosyltransferase (RhlAB), both of which are required for rhamnolipid synthesis. Another gene, rhII, has now been identified downstream of the rhlABR gene cluster. The putative RhlI protein shares significant sequence similarity with bacterial autoinducer synthetases of the LuxI type. A P. aeruginosa rhlI mutant strain carrying a disrupted rhlI gene was unable to produce rhamnolipids and lacked rhamnosyltransferase activity. Rhamnolipid synthesis was restored by introducing a wild-type rhlI gene into such strains or, alternatively, by adding either the cell-free spent supernatant from a P. aeruginosa wild-type strain or synthetic N-acylhomoserine lactones. Half-maximal induction of rhamnolipid synthesis in the rhlI mutant strain required 0.5 microM N-butyrylhomoserine lactone or 10 microM N-(3-oxohexanoyl)homoserine lactone. The P. aeruginosa rhlA promoter was active in the heterologous host Pseudomonas putida when both the rhlR and rhlI genes were present or when the rhlR gene alone was supplied together with synthetic N-acylhomoserine lactones. The RhlR-RhlI regulatory system was found to be essential for the production of elastase as well, and cross-communication between the RhlR-RhlI rhamnolipid regulatory system and the LasR-LasI elastase regulatory system was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.