968 resultados para Anhydrous ethanol
Resumo:
In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt1Sn1/C > Pt1Ru1/C > Pt1W1/C > Pt1Pd1/C > Pt/C. Moreover, Pt1Ru1/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt1Sn1/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt1Sn1/C or Pt3Sn2/C or Pt2Sn1/C as anode catalyst showed better performances than those with Pt3Sn1/C or Pt4Sn1/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt1Ru1/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OHads, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low current density regions where the electro-oxidation of ethanol is considered not so fast and its chemisorption is not the rate-determining step, the Pt3Sn2/C seems to be more suitable for the direct ethanol fuel cell. At 75 degreesC, the single ethanol fuel cell with Pt3Sn2/C as anode catalyst showed a comparable performance to that with Pt2Sn1/C, but at higher temperature of 90 degreesC, the latter presented much better performance. It is thought from a practical point of view that Pt2Sn1/C, supplying sufficient -OHads and having adequate active Pt sites and acceptable ohmic effect, could be the appropriate anode catalyst for DEFC. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
The separation of ethyl acetate and ethanol (EtOH) is important but difficult due to their close boiling points and formation of an azeotropic mixture. The separation of the azeotropic mixture of ethyl acetate and EtOH using the hydrophilic ionic liquids (ILs) 1-alkyl-3-methylimidazolium chloride (alkyl = butyl, hexyl, and octyl) ([C(n)mim]Cl, n = 4, 6, 8) and 1-allyl-3-methylimidazolium chloride and bromide ([Amim]Cl and [Amim]Br) has been investigated. Triangle phase diagrams of five ILs with ethyl acetate and EtOH were constructed, and the biphasic regions were found as follows: [Amim]Cl > [Amim]Br > [C(4)mim]Cl > [C(6)mim]Cl > [C(8)mim]Cl. The mechanisms of the ILs including cation, anion, and polarity effect were discussed.
Resumo:
A controllable silver nanoparticle aggregate system has been synthesized by adding different amounts of ethanol to cetyltrimethylammonium bromide (CTAB) capped silver nanoparticles (Ag-nps), which could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. This ethanol-induced aggregation can be attributed to preferential dissolution of CTAB into ethanol, which leads a partial removal of the protective CTAB layer on Ag-nps. The optical and morphological properties of these aggregates under various volumes of ethanol were explored via UV-vis spectroscopy and atomic force microscopy.
Resumo:
Insulin has been encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres by solid-in-oil-in-oil (S/O/O) emulsion technique using DMF/corn oil as new solvent pairs. To get better encapsulation efficiency, insulin nanoparticles were prepared by the modified isoelectric point precipitation method so that it had good dispersion in the inner oil phase. The resulting microspheres had drug loading of 10% (w/w), while the encapsulation efficiency could be up to 90-100%. And the insulin release from the microspheres could last for 60 days. Microspheres encapsulated original insulin with the same method had lower encapsulation efficiency, and shorter release period. Laser scanning confocal microscopy indicated the insulin nanoparticle and original insulin had different distribution in microspheres. The results suggested that using insulin nanoparticle was better than original insulin for microsphere preparation by S/O/O method.
Resumo:
The phase and morphology variations of titania prepared in ethanol/acetic acid mixture solvents have been systematically investigated. X-ray diffraction results and microscopy observations reveal that pure anatase aggregates consisted of small nanoparticles, pure rutile microspheres comprised of nanofibers, and their mixtures could be obtained by varying ratios of ethanol to acetic acid under solvothermal conditions. The contents of anatase and rutile in the mixed phases also vary with the ratios of ethanol to acetic acid. Field emission scanning electron microscopy and high resolution transmission electron microscopy results show that the two phases are separated from each other in final products and form aggregates with morphologies resembling to their pure phase products obtained under favorable conditions. The as-produced rutile nanofibers, either in pure phase or in mixed phases, tend to grow into hollow microspheres.
Resumo:
The Pt/C electrocatalysts containing Pr6O11 nanorods were successfully prepared. By various electrochemical characterization methods, it was demonstrated that the Pr6O11 nanorods have an obviously promotive role for ethanol electrooxidation catalyzed by Pt/C. However, according to the stripping experiment, the promotive effect of Pr6O11 does not result from the easier electrooxidation of the intermediate adsorbate on Pt-Pr6O11/C than on Pt/C. It was supposed that Pr6O11 could promote a certain step in ethanol oxidation, and that the special morphology of the nanorods could further enhance the activity compared with nanoparticles.
Resumo:
We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.
Resumo:
We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.
Resumo:
The unique strategy for electrochemiluminescence (ECL) sensor based on the quantum dots (QDs) oxidation in aqueous solution to detect amines is proposed for the first time. Actually, there existed two QDs ECL peaks in anhydrous solution, one at high positive potential and another at high negative potential. However, here we introduced the QDs oxidation ECL in aqueous solution to fabricate a novel ECL sensor. Such sensor needed only lower positive potential to produce ECL, which could prevent the interferences resulted from high potential as that of QDs reduction ECL in aqueous solution. Therefore, the present work not only extended the QDs oxidation ECL application field from anhydrous to aqueous solution but also enriched the variety of ECL system in aqueous solution. Furthermore, we investigated the QDs oxidation ECL toward different kinds of amines, and found that both aliphatic alkyl and hydroxy groups could lead to the enhancement of ECL intensity. Among these amines, 2-(dibutylamino)ethanol (DBAE) is the most effective one, and accordingly, the first ECL sensing application of the QDs oxidation ECL toward DBAE is developed; the as-prepared ECL sensor shows wide linear range, high sensitivity, and good stability.
Resumo:
In this paper, five Pt3Sn1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt3Sn1P2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt3Sn1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm(-2) that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.
Resumo:
It is reported for the first time that the slow electrochemical kinetics process for the electro-oxidation of ethanol can be promoted by changing the electrochemical environment. The electro-oxidation of ethanol at a Pt electrode in the presence of Eu3+ cations was studied and an enhancement effect was exhibited. Cyclic voltammetry experiment results showed that the peak current density for the electro-oxidation of ethanol was increased in the presence of EU3+ in the ethanol solution. A preliminary discussion of the mechanism of the enhancement effect is given. This is based on a CO stripping experiment, which shows that either the onset potential or the peak potential of CO oxidation is shifted negatively after adding Eu3+ to the solution.