966 resultados para Amyloid Vorläufer Protein (APP)
Resumo:
In Alzheimer disease (AD) the involvement of entorhinal cortex, hippocampus, and associative cortical areas is well established. Regarding the involvement of the primary motor cortex the reported data are contradictory. In order to determine whether the primary motor cortex is involved in AD, the brains of 29 autopsy cases were studied, including, 17 cases with severe cortical AD-type changes with definite diagnoses of AD, 7 age-matched cases with discrete to moderate cortical AD-type changes, and 5 control cases without any AD-type cortical changes. Morphometric analysis of the cortical surface occupied by senile plaques (SPs) on beta-amyloid-immunostained sections and quantitative analysis of neurofibrillary tangles (NFTs) on Gallyas-stained sections was performed in 5 different cortical areas including the primary motor cortex. The percentage of cortical surface occupied by SPs was similar in all cortical areas, without significant difference and corresponded to 16.7% in entorhinal cortex, 21.3% in frontal associative, 16% in parietal associative, and 15.8% in primary motor cortex. The number of NFTs in the entorhinal cortex was significantly higher (41 per 0.4 mm2), compared with those in other cortical areas (20.5 in frontal, 17.9 in parietal and 11.5 in the primary motor cortex). Our findings indicate that the primary motor cortex is significantly involved in AD and suggest the appearance of motor dysfunction in late and terminal stages of the disease.
Resumo:
CD44 is the major cell-surface receptor for hyaluronan, which is implicated in cell-cell and cell-matrix adhesion, cell migration, and signaling. Studies have shown that CD44-dependent migration requires CD44 to be shed from the cell surface and that matrix metalloproteinase-mediated cleavage may provide an underlying mechanism. However, the full spectrum of proteases that may participate in CD44 shedding has yet to be defined. In this issue, Anderegg et al. demonstrate that ADAM10, but not ADAM17 or MMP14, mediates constitutive shedding of CD44 in human melanoma cells and that knockdown of ADAM10 blocks the antiproliferative activity of the soluble proteolytic cleavage product of CD44.
Resumo:
In hair follicles, dermal papilla (DP) and dermal sheath (DS) cells exhibit striking levels of plasticity, as each can regenerate both cell types. Here, we show that thrombin induces a phosphoinositide 3-kinase (PI3K)-Akt pathway-dependent acquisition of DS-like properties by DP cells in vitro, involving increased proliferation rate, acquisition of ;myofibroblastic' contractile properties and a decreased capacity to sustain growth and survival of keratinocytes. The thrombin inhibitor protease nexin 1 [PN-1, also known as SERPINE2) regulates all those effects in vitro. Accordingly, the PI3K-Akt pathway is constitutively activated and expression of myofibroblastic marker smooth-muscle actin is enhanced in vivo in hair follicle dermal cells from PN-1(-/-) mice. Furthermore, physiological PN-1 disappearance and upregulation of the thrombin receptor PAR-1 (also known as F2R) during follicular regression in wild-type mice also correlate with such changes in DP cell characteristics. Our results indicate that control of thrombin signaling interferes with hair follicle dermal cells plasticity to regulate their function.
Resumo:
Little is known about airway inflammatory markers in chronic obstructive pulmonary disease (COPD). The objective of the present study was to identify and try to correlate pulmonary and peripheral blood inflammatory markers in COPD. In a cross-sectional study on patients with stable COPD, induced sputum and blood samples were collected for the determination of C-reactive protein, eosinophilic cationic protein, serum amyloid A protein, a-1 antitrypsin (a-1AT), and neutrophil elastase. Twenty-two patients were divided into two groups according to post-bronchodilator forced expiratory volume in the first second (%FEV1): group 1 (N = 12, FEV1 <40%) and group 2 (N = 10, FEV1 ³40%). An increase in serum elastase, eosinophilic cationic protein and a-1AT was observed in serum markers in both groups. Cytology revealed the same total number of cells in groups 1 and 2. There was a significantly higher number of neutrophils in group 1 compared to group 2 (P < 0.05). No difference in eosinophils or macrophages was observed between groups. Serum elastase was positively correlated with serum a-1AT (group 1, r = 0.81, P < 0.002 and group 2, r = 0.83, P < 0.17) and negatively correlated with FEV1 (r = -0.85, P < 0.03 and -0.14, P < 0.85, respectively). The results indicate the presence of chronic and persistent pulmonary inflammation in stable patients with COPD. Induced sputum permitted the demonstration of the existence of a subpopulation of cells in which neutrophils predominated. The serum concentration of all inflammatory markers did not correlate with the pulmonary functional impairment.
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
Les protéines sont au coeur de la vie. Ce sont d'incroyables nanomachines moléculaires spécialisées et améliorées par des millions d'années d'évolution pour des fonctions bien définies dans la cellule. La structure des protéines, c'est-à-dire l'arrangement tridimensionnel de leurs atomes, est intimement liée à leurs fonctions. L'absence apparente de structure pour certaines protéines est aussi de plus en plus reconnue comme étant tout aussi cruciale. Les protéines amyloïdes en sont un exemple marquant : elles adoptent un ensemble de structures variées difficilement observables expérimentalement qui sont associées à des maladies neurodégénératives. Cette thèse, dans un premier temps, porte sur l'étude structurelle des protéines amyloïdes bêta-amyloïde (Alzheimer) et huntingtine (Huntington) lors de leur processus de repliement et d'auto-assemblage. Les résultats obtenus permettent de décrire avec une résolution atomique les interactions des ensembles structurels de ces deux protéines. Concernant la protéine bêta-amyloïde (AB), nos résultats identifient des différences structurelles significatives entre trois de ses formes physiologiques durant ses premières étapes d'auto-assemblage en environnement aqueux. Nous avons ensuite comparé ces résultats avec ceux obtenus au cours des dernières années par d'autres groupes de recherche avec des protocoles expérimentaux et de simulations variés. Des tendances claires émergent de notre comparaison quant à l'influence de la forme physiologique de AB sur son ensemble structurel durant ses premières étapes d'auto-assemblage. L'identification des propriétés structurelles différentes rationalise l'origine de leurs propriétés d'agrégation distinctes. Par ailleurs, l'identification des propriétés structurelles communes offrent des cibles potentielles pour des agents thérapeutiques empêchant la formation des oligomères responsables de la neurotoxicité. Concernant la protéine huntingtine, nous avons élucidé l'ensemble structurel de sa région fonctionnelle située à son N-terminal en environnement aqueux et membranaire. En accord avec les données expérimentales disponibles, nos résultats sur son repliement en environnement aqueux révèlent les interactions dominantes ainsi que l'influence sur celles-ci des régions adjacentes à la région fonctionnelle. Nous avons aussi caractérisé la stabilité et la croissance de structures nanotubulaires qui sont des candidats potentiels aux chemins d'auto-assemblage de la région amyloïde de huntingtine. Par ailleurs, nous avons également élaboré, avec un groupe d'expérimentateurs, un modèle détaillé illustrant les principales interactions responsables du rôle d'ancre membranaire de la région N-terminal, qui sert à contrôler la localisation de huntingtine dans la cellule. Dans un deuxième temps, cette thèse porte sur le raffinement d'un modèle gros-grain (sOPEP) et sur le développement d'un nouveau modèle tout-atome (aaOPEP) qui sont tous deux basés sur le champ de force gros-grain OPEP, couramment utilisé pour l'étude du repliement des protéines et de l'agrégation des protéines amyloïdes. L'optimisation de ces modèles a été effectuée dans le but d'améliorer les prédictions de novo de la structure de peptides par la méthode PEP-FOLD. Par ailleurs, les modèles OPEP, sOPEP et aaOPEP ont été inclus dans un nouveau code de dynamique moléculaire très flexible afin de grandement simplifier leurs développements futurs.
Resumo:
There is evidence of increased systemic expression of active GSK3B in Alzheimer`s disease patients, which apparently is associated with the formation of senile plaques and neurofibrillary tangles. Due to its central role in the pathogenesis of AD, GSK3B is currently a promising target of the pharmaceutical industry. Whilst trials with specific GSK inhibitors in AD are under way, major attention has been focused on the neuroprotective effects of lithium. Whereas the direct and indirect inhibitory effects of lithium over GSK3 activity have been documented by several groups, its effects over Gsk3 transcription have not yet been addressed. We used quantitative PCR to evaluate the transcriptional regulation of Gsk3a and Gsk3b in lithium-treated primary cultures of rat cortical and hippocampal neurons. We found a significant and dose-dependent reduction in the expression of Gsk3b, which was specific to hippocampal cells. This same effect was further confirmed in vivo by measuring Gsk3 expression in different brain regions and in peripheral leukocytes of adult rats treated with lithium. Our studies show that LiCl can modulate Gsk3b transcription in vitro and in vivo. This observation suggest new regulatory effects of lithium over Gsk3b, contributing to the better understanding of its mechanisms of action, offering a new and complementary explanation for Gsk3b modulation and reinforcing its potential for the inhibition of key pathological pathways in Alzheimer`s disease.
Resumo:
The lymphoma is the main hematopoietic tumor in dogs and it is characterized by the proliferation of cells from lymphoid tissue, histiocytes and its precursors. Animals with lymphoma often show changes in biochemical and hematological parameters such as non-regenerative normochromic normocytic anemia, hemolytic anemia, hypocalcaemia and monoclonal gammopathy. The development of tumor can cause alterations in serum concentrations of acute phase proteins (APPs), consequent of hepatocytes stimulus by cytokines of inflammatory action. This study aimed to quantify and qualify APPs in dogs with lymphoma, at diagnosis time and during the time of chemotherapy sessions. After syneresis, centrifugation and fractioning the serum samples of 10 healthy and 10 dogs with lymphomas, the proteins fractions were separated by polyacrilamide gel electrophoresis (SDS-PAGE) and its concentrations were determined by computer densitometry. Between 18 and 30 proteins were separated by eletrophoresis, with molecular weights ranging from 18 to 245 kDa (kilodaltons). The alpha-1-glicoprotein acid (AGP) and transferrin serum concentration showed significantly higher in dogs with lymphoma, when compared with healthy dogs at diagnosis. The alpha-1-antitripsin (AAT) serum concentrations showed significantly higher in healthy dogs, when compared with dogs with lymphoma at diagnosis. The dogs with lymphoma the albumin did not appear as negative APP. On the other hand, transferrin appeared as positive AAP at diagnosis time and during the chemotherapy sessions. Healthy dogs had AAT serum concentrations significantly higher when compared to dogs with lymphoma at diagnosis. So, in this trial, it is suggested that this protein has been shown as a negative APP in the dogs with lymphoma. These dogs presented significantly higher AGP serum concentrations, in relation to healthy dogs at diagnosis, evidencing this protein APP positive behavior in neoplasm.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
The diagnosis of vascular dementia (VaD) describes a group of various vessel disorders with different types of vascular lesions that finally contribute to the development of dementia. Most common forms of VaD in the elderly brain are subcortical vascular encephalopathy, strategic infarct dementia, and the multi infarct encephalopathy. Hereditary forms of VaD are rare. Most common is the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Sporadic forms of VaD are caused by degenerative vessel disorders such as atherosclerosis, small vessel disease (SVD) including small vessel arteriosclerosis, arteriolosclerosis, and lipohyalinosis, and cerebral amyloid angiopathy (CAA). Less frequently inflammatory vessel disorders and tumor-associated vessel lesions (e. g. angiocentric T-cell or angiotropic large cell lymphoma) can cause symptoms of dementia. Here, we review and discuss the impact of vessel disorders to distinct vascular brain tissue lesions and to the development of dementia in elderly individuals. The impact of coexisting neurodegenerative pathology in the elderly brain to VaD as well as the correlation between SVD and CAA expansion in the brain parenchyma with that of Alzheimer's disease (AD)-related pathology is highlighted. We conclude that "pure" VaD is rare and most frequently caused by infarctions. However, there is a significant contribution of vascular lesions and vessel pathology to the development of dementia that may go beyond tissue damage due to vascular lesions. Insufficient blood blow and alterations of the perivascular drainage mechanisms of the brain may also lead to a reduced protein clearance from extracellular space and subsequent increase of proteins in the brain parenchyma, such as the amyloid beta-protein, and foster, thereby, the development of AD-related neurodegeneration. As such, it seems to be important for clinical practice to consider treatment of potentially coexisting AD pathology in cognitively impaired patients with vascular lesions. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims: Oxidative stress plays a central role in Alzheimer's disease (AD). Pro198Leu cytosolic glutathione peroxidase (GPx1) polymorphism seems to be associated with a lower activity of this enzyme, but there are no studies with AD patients. Thus, the aim was to determine the frequency of the GPx1 Pro198Leu polymorphism in AD patients and to verify its relation to glutathione peroxidase (GPx) activity and selenium (Se) status. Methods:The study was carried out in a group of AD elderly (n = 28) compared to a control group (n = 29). Blood Se concentrations were measured through hydride generation atomic absorption spectroscopy. GPx activity was determined using a commercial kit, and the polymorphism using amplified DNA sequencing. Results:The distribution of genotypes was not different between groups. The variant allele frequency was 0.179 (AD group) and 0.207 (control group). Although no differences regarding GPx activity were found between individuals with different genotypes, lower blood Se levels were found in Pro/Pro AD patients compared to Pro/Pro control subjects, which was not found in the Pro/Leu groups. Moreover, the association between the erythrocyte Se concentration and GPx activity was affected by the Pro198Leu genotype. Conclusions: Results indicate that this polymorphism had apparently affected Se status in AD patients and that more studies in this field are necessary. Copyright (c) 2012 S. Karger AG, Basel
Resumo:
Down syndrome (DS) or Trisomy 21, occurring in 1/700 and 1/1000 livebirths, is the most common genetic disorder, characterized by a third copy of the human chromosome 21 (Hsa21). DS is associated with various defects, including congenital heart diseases, craniofacial abnormalities, immune system dysfunction, mental retardation (MR), learning and memory deficiency. The phenotypic features in DS are a direct consequence of overexpression of genes located within the triplicated region on Hsa21. In addition to developmental brain abnormalities and disabilities, people with DS by the age of 30-40 have a greatly increased risk of early-onset of Alzheimer’s disease (AD) and an apparent tendency toward premature aging. Many of the immunological anomalies in DS can be enclosed in the spectrum of multiple signs of early senescence. People with DS have an increased vulnerability to oxidative damage and many factors, including amyloid beta protein (Abeta), genotype ApoE4, oxidative stress, mutations in mitochondrial DNA (mtDNA), impairment of antioxidant enzymes, accelerated neuronal cell apoptosis, are related to neuronal degeneration and early aging in DS. SUBJECTS and METHODS: Since 2007 a population of 50 adolescents and adults with DS, 26 males and 24 females (sex-ratio: M/F = 1.08), has been evaluated for the presence of neurological features, biomarkers and genetic factors correlated with neuronal degeneration and premature aging. The control group was determined by the mother and the siblings of the patients. A neuropsychiatric evaluation was obtained from all patients. The levels of thyroid antibodies (antiTg and antiTPO) and of some biochemical markers of oxidative stress, including homocysteine (tHcy), uric acid, cobalamin, folate were measured. All patients, the mother and the siblings were genotyped for ApoE gene. RESULTS: 40% of patients, with a mild prevalence of females aged between 19 and 30 years, showed increased levels of antiTg and antiTPO. The levels of tHcy were normal in 52% patients and mildly increased in 40%; hyperomocysteinemia was associated with normal levels of thyroid antibodies in 75% of patients (p<0.005). The levels of uric acid were elevated in 26%. Our study showed a prevalence of severe MR in patients aged between 1-18 years and over 30 years. Only 3 patients, 2 females and one male, over 30 years of age, showed dementia. According to the literature, the rate of Down left-handers was high (25%) compared to the rest of population and the laterality was associated with increased levels of thyroid antibodies (70%). 21.5% of patients were ApoE4 positive (ApoE4+) with a mean/severe MR. CONCLUSIONS: Until now no biochemical evidence of oxidative damage and no deficiency or alteration of antioxidant function in our patients with DS were found. mtDNA sequencing could show some mutations age-related and associated with oxidative damage and neurocognitive decline in the early aging of DS. The final aim is found predictive markers of early-onset dementia and a target strategy for the prevention and the treatment of diseases caused by oxidative stress. REFERENCES: 1) Rachidi M, Lopes C: “Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.” - Eur J Paediatr Neurol. May;12(3):168-82 (2008). 2) Lott IT, Head E: “Down syndrome and Alzheimer's disease: a link between development and aging.” - Ment Retard Dev Disabil Res Rev, 7(3):172-8 (2001). 3) Lee HC, Wei YH: “Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging.” - Exp Biol Med (Maywood), May;232(5):592-606 (2007).
Resumo:
Introduction. Microembolization during the carotid artery revascularization procedure may cause cerebral lesions. Elevated C-Reactive Protein (hsCRP), Vascular endothelial growth factor (VEGF) and serum amyloid A protein (SAA) exert inflammatory activities thus promoting carotid plaque instability. Neuron specific enolase (NSE) is considered a marker of cerebral injury. Neoangiogenesis represents a crucial step in atherosclerosis, since neovessels density correlates with plaque destabilization. However their clinical significance on the outcome of revascularization is unknown. This study aims to establish the correlation between palque vulnerabilty, embolization and histological or serological markers of inflammation and neoangiogenesis. Methods. Serum hsCRP, SAA, VEGF, NSE mRNA, PAPP-A mRNA levels were evaluated in patients with symptomatic carotid stenosis who underwent filter-protected CAS or CEA procedure. Cerebral embolization, presence of neurologicals symptoms, plaque neovascularization were evaluated testing imaging, serological and histological methods. Results were compared by Fisher’s, Student T test and Mann-Whitney U test. Results. Patients with hsCRP<5 mg/l, SAA<10mg/L and VEGF<500pg/ml had a mean PO of 21.5% versus 35.3% (p<0.05). In either group, embolic material captured by the filter was identified as atherosclerotic plaque fragments. Cerebral lesions increased significantly in all patients with hsCRP>5mg/l and SAA>10mg/l (16.5 vs 2.8 mean number, 3564.6 vs 417.6 mm3 mean volume). Discussion. High hsCRP, SAA and VEGF levels are associated with significantly greater embolization during CAS and to the vulnerabiliy of the plaque. This data suggest CAS might not be indicated as a method of revascularization in this specific group of patients.
Resumo:
Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.
Resumo:
Immunoglobulin light-chain (AL) amyloidosis is a form of systemic amyloidosis in which the fibrils are derived from monoclonal light chains. We report a case of a 66-year-old woman presenting with nail changes, parchment-like hand changes, progressive alopecia and sicca syndrome. Histopathological studies of biopsy specimens of the scalp, the nail, minor labial salivary glands and abdominal skin revealed deposits of AL κ-type amyloid. Urine protein electrophoresis exhibited a weak band of κ-type light chains. Based on this striking case, we here review the characteristic nail and hair manifestations associated with systemic amyloidosis. Knowledge of these signs is important for an early diagnosis of systemic amyloidosis, identification of the underlying disease and patient management.