997 resultados para Aluminium 27
Resumo:
A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
The severe wear of a near eutectic aluminium silicon alloy is explored using a range of electron microscopic, spectroscopic and diffraction techniques to identify the residually strained and unstrained regions, microcracks and oxidized regions in the subsurface. In severe wear the contact pressure exceeds the elastic shakedown limit. Under this condition the primary and eutectic silicon particles fragment drastically. The fragments are transported by the matrix as it undergoes incremental straining with each cyclic contact at the asperity level. The grains are refined from similar to 2000 nm in the bulk to 30 nm in the near surface region. A large reduction in the interparticle distance compared with that for a milder stage of wear gives rise to high strain gradients which contribute to an enhancement of the dislocation density. The resulting regions of very high strain in the boundaries of the recrystallized grains as well as within the subgrains lead to the formation of microvoidskracks. This is accompanied by the formation of brittle oxides at these subsurface interfaces due to enhanced diffusion of oxygen. We believe that the abundance of such microcracks in the near surface region, primed by severe plastic deformation, is what distinguishes a severe wear regime from mild wear. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural characterization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (similar to 200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.