931 resultados para Algal bloom
Resumo:
Measurement of the physiological effects of the red algal epiphytes Smithora naiadum (Anders.) Hollenberg and Melobesia mediocris (Fosl.) Setch. and Mason on Phyllospadix torreyi Wats. were made near Hopkins Marine Station, Pacific Grove, California. Field studies revealed a significant influence of these epiphytes on both the breakage incidence and length, with that of Melobesia being the most pronounced. Analysis of the photosynthetic rate of the seagrass shows a decrease in the photosynthetic maxima in both epiphytized samples at a light saturating intensity. Under light limiting conditions, an increase in photosynthetic efficiency and a change in chlorophyll a composition in both epiphytized sample types suggest an adaptive mechanism similiar to those found in terrestrial and aquatic shade plants.
Resumo:
•The 2013 Inter-sessional Science Board Meeting: A Note from the Science Board Chairman (pp. 1-4) •ICES/PICES Workshop on Global Assessment of the Implications of Climate Change on the Spatial Distribution of Fish and Fisheries (pp. 5-8) •PICES participates in a Convention on Biological Diversity Regional Workshop (pp. 9-11) •Social and Economic Indicators for Status and Change within North Pacific Ecosystems (pp. 12-13) •The Fourth International Jellyfish Bloom Symposium (pp. 14-15) •Workshop on Radionuclide Science and Environmental Quality in the North Pacific (pp. 16-17) •PICES-MAFF Project on Marine Ecosystem Health and Human Well-Being: Indonesia Workshop (pp. 18-19) •Socioeconomic Indicators for United States Fisheries and Fishing Communities (pp. 20-23) •Harmful Algal Blooms in a Changing World (pp. 24-25, 27) •Enhancing Scientific Cooperation between PICES and NPAFC (pp. 26-27) •Workshop on Marine Biodiversity Conservation and Marine Protected Areas in the Northwest Pacific (pp. 28-29) •The State of the Western North Pacific in the Second Half of 2012 (pp. 30-31) •Stuck in Neutral in the Northeast Pacific Ocean (pp. 32-33) •The Bering Sea: Current Status and Recent Trends (pp. 34-36) •For your Bookshelf (p. 37) •Howard Freeland takes home Canadian awards (p. 38)
Resumo:
This report is the product of a panel of experts in the science of blooms of unicellular marine algae which can cause mass mortalities in a variety of marine organisms and cause illness and even death in humans who consume contaminated seafood. These phenomena are collectively termed harmful algal blooms or HABs for short. As a counterpart to recent assessments of the priorities for scientific research to understand the causes and behavior of HABs, this assessment addressed the management options for reducing their incidence and extent (prevention), actions that can quell or contain blooms (control), and steps to reduce the losses of resources or economic values and minimize human health risks (mitigation). This assessment is limited to an appraisal of scientific understanding, but also reflects consideration of information and perspectives provided by regional experts, agency managers and user constituencies during three regional meetings. The panel convened these meetings during the latter half of 1996 to solicit information and opinions from scientific experts, agency managers and user constituencies in Texas, Washington, and Florida. The panel's assessment limited its attention to those HABs that result in neurotoxic shellfish poisoning, paralytic shellfish poisoning, brown tides, amnesic shellfish poisoning, and aquaculture fish kills. This covers most, but certainly not all, HAB problems in the U.S.
Resumo:
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.
Resumo:
Harmful algal blooms (HABs) are a significant and potentially expanding problem around the world. Resource management and public health protection require sufficient information to reduce the impacts of HABs by response strategies and through warnings and advisories. To be effective, these programs can best be served by an integration of improved detection methods with both evolving monitoring systems and new communications capabilities. Data sets are typically collected from a variety of sources, these can be considered as several types: point data, such as water samples; transects, such as from shipboard continuous sampling; and synoptic, such as from satellite imagery. Generation of a field of the HAB distribution requires all of these sampling approaches. This means that the data sets need to be interpreted and analyzed with each other to create the field or distribution of the HAB. The HAB field is also a necessary input into models that forecast blooms. Several systems have developed strategies that demonstrate these approaches. These range from data sets collected at key sites, such as swimming beaches, to automated collection systems, to integration of interpreted satellite data. Improved data collection, particularly in speed and cost, will be one of the advances of the next few years. Methods to improve creation of the HAB field from the variety of data types will be necessary for routine nowcasting and forecasting of HABs.
Resumo:
The distribution and intensity of a bloom of the toxic cyanobacterium, Microcystis aeruginosa, in western Lake Erie was characterized using a combination of satellite ocean-color imagery, field data, and meteorological observations. The bloom was first identified by satellite on 14 August 2008 and persisted for more than 2 months. The distribution and intensity of the bloom was estimated using a satellite algorithm that is sensitive to near-surface concentrations of M. aeruginosa. Increases in both area and intensity were most pronounced for wind stress less than 0.05 Pa. Area increased while intensity did not change for wind stresses of 0.05–0.1 Pa, and both decreased for wind stress greater than 0.1 Pa. The recovery in intensity at the surface after strong wind events indicated that high wind stress mixed the bloom through the water column and that it returned to the surface once mixing stopped. This interaction is consistent with the understanding of the buoyancy of these blooms. Cloud cover (reduced light) may have a weak influence on intensity during calm conditions. While water temperature remained greater than 15°C, the bloom intensified if there were calm conditions. For water temperature less than 15°C, the bloom subsided under similar conditions. As a result, wind stress needs to be considered when interpreting satellite imagery of these blooms.
Resumo:
Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10–20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.
Resumo:
Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42:170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we conducted food removal experiments using the cosmopolitan copepod grazer Acartia tonsa. Wild-caught, adult female A. tonsa were exposed to 6 monoalgal or mixed algal diets made using bloom concentrations of toxic (CCMP 2064) and non-toxic (CSIC1) strains of K. veneficum. Ingestion and clearance rates were calculated using the equations of Frost (1972). Exposure to the toxic strain of K. veneficum did not contribute to an increased mortality of the copepods and no significant differences in copepod mortality were found among the experimental diets. However, A. tonsa had significantly greater clearance and ingestion rates when exposed to a monoalgal diet of the non-toxic strain CSIC1 than when exposed to the monoalgal diet of toxic strain CCMP 2064 and mixed diets dominated by this toxic strain. These results support the hypothesis that karlotoxins in certain strains of K. veneficum deter grazing by potential predators and contribute to the formation and continuation of blooms.
Resumo:
Discolouration of sands and other marine substrata caused by benthic diatoms have been reported by Aleem (1950) Eaton and Moss (1975), Sullivan (1980), Maple (1983), Navarro (1983) and Wah and Wee (1988). However, this is for the first time such a phenomenon is being reported from a mangrove habitat of Karachi. It was caused by a pennate diatom Navicula cancellata Donkin.
Resumo:
Microalgal community structure in experimental carp-pangasiid catfish polyculture ponds under four different stocking rates (treatments) each with three replications in the Field Laboratory of the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh was studied. A total of 38 microalgal genera were identified under four major groups: 18 genera belong to Chlorophyceae, 9 to Cyanophyceae, 8 to Bacillariophyceae and 3 to Euglenophyceae. Chlorophyceae was abundant in all treatments followed by Cyanophyceae, Bacillariophyceae and Euglenophyceae throughout the study period. The cell densities of total microalgal population varied between 51.66x10^3 cells/L in June in T1 and 126.4x10^3 cells/L in August in T2. The appearance of Microcysris, Oscillatoria, Gomphospheria, Hildenbrandia, Chlorella, Scenedesmus, Cyclotella, Navicula, Nitzschia, Euglena and Phacus as dominant genera throughout the study period may related to sufficient nutrient availability, good light conditions and high growth rate of these genera. Water quality parameters of the experimental ponds were within suitable range for microalgal production and fish culture though the nutrient (nitrate-nitrogen and phosphate-phosphorus) concentrations were high. The factors involved in structuring a phytoplankton community arise from the relationship generated by physical, chemical and biological conditions especially the stocked planktivorous carps. Microalgal bloom formation is very common in pangasiid catfish monoculture ponds but in the present study bloom was not formed and the algal species diversity was found to be slightly increased with the study period. The introduction carps of carps in the experimental ponds might have helped in controlling the microalgal bloom formation and maintenance of the species diversity.
Resumo:
The timing of the floral transition has significant consequences for reproductive success in plants. Plants gauge both environmental and endogenous signals before switching to reproductive development. Many temperate species only flower after they have experienced a prolonged period of cold, a process known as vernalization, which aligns flowering with the favourable conditions of spring. Considerable progress has been made in understanding the molecular basis of vernalization in Arabidopsis. A central player in this process is FLC, which blocks flowering by inhibiting genes required to switch the meristem from vegetative to floral development. Recent data shows that many regulators of FLC alter chromatin structure or are involved in RNA processing.
Resumo:
A study was carried out in nine fertilized fish ponds under three treatments at Bangladesh Agricultural University, Mymensingh, Bangladesh, to record the influence of different fertilizers on noxious euglenophytes bloom. Some water quality parameters (viz., temperature, pH, phosphate-phosphorus, nitrate-nitrogen and chlorophyll-a) and phytoplankton populations were monitored at certain intervals. During the study period, three genera of euglenophytes such as Euglena, Phacus and Trachelomonas were recorded of which Euglena was most dominant. Significantly (p<0.05) higher cell density of euglenophytes was observed in the ponds treated with chicken manure followed by the ponds treated with both cow dung and chicken manures and the ponds treated with only cow dung. The higher cell density of euglenophytes was explained by acidic pH (around 6.5) and higher phosphate-phosphorus (1.37 mg/1) and nitrate-nitrogen (1.47 mg/I) concentrations. The population size of euglenophytes showed positive correlation with phosphate-phosphorus and nitrate-nitrogen concentration while negative with pH. Nutrient enrichment and acidic pH enhanced the growth of euglenophytes but reduced the growth of chlorophytes and bacillariophytes.
Resumo:
The present overview summarizes data from one year's study during the period of 1379 to 1380 in the regions by "Anzali" lagoon called "Abkenar" and "Hendkhale". Specimens from this lagoon obtained weekly during mordad and shahrivar mounths (July 21 to september 21). The study included 67 types of 5 phytoplanktonal phylum. In "Abkenar" region Cyanobacters with maximum of 97% and minimum of 64.5% of total combination of phytoplanktones made the dominating combination during the period of study , while in "hendkhale" chyrsophyta with maximum of 89% and minimum of 38.7% of total phytoplanktonal was the dominating figure at the same period of time. Researches on ecological parameteres showed that the avarage dissolved oxygen in -Abkenar" and "hendlchale" regions was 10.7 and 8.0 mg/lit respectivly, also total rate of Phosphat in these regions was 0.085 and 0.15 mg/lit respectivly. This study showed that the rates of Nitrat and Amonium in "Abkenar" region was 0.043 and 0.79 mg / lit while for the same substances in "Ilendkhale" measured 0.08 and 0.7 mg I lit respective. Also the avarage rate of chlorophyll a in these two areas measured 58,38 and 40.45 j.un /ht respectivly. Depending on results of correlation cofficient in "Abkenar" region we had Cyanobacters , water and air temperature , Chlorophyll a and total amount of Phosphat as a poitive correlation with transparency while Amonium and Nitrat showed , a negative correlation , EC and finally dissolved oxygen showed a very low rate of correlation coffiocient. To perform this research 5 genus of Cyanobacteres horn "Anzali" lagoon have been isolated and cultured in a laboratorial conditions Later by using Mouse Bioassay method one of these genus identified as a toxic algae. Levels of LD50 with intra peritoneal injection of toxin on mouse in 24 hours was 660 mg/kg and Levels of LC50 by using Bioassay method on Artemia and Daphnia has been shown 618 and 1000 mg kg respectively. Also the physiological effects of were investigated. algae on two types of Cypronides family called Cyprinus carpi° and Hypophrthabnichthys Resultes of blood analyses of Cypronides who were feeded by toxic algae showed a significant decline (P < 0.05) in white and red blood cells and their hematocrites. Levels of LDH , SGOT and SGPT in their blood serum had a significant increase in porportion to control group (P < 0.05) but there was no evidance a differences in Total Protein levels. Pathological studies show damage and destruction of hepato pancreas and kidney of these fishes. Signs and symptoms of intoxication caused by Cyanobacter called Planktohrix agardlltii in mouse and fish show heptotoxic character. This toxin belongs to cyclicpeptides of microcystines group.