978 resultados para Al2O3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neodymium doped and undoped aluminum oxide samples were obtained using two different techniques: Pechini and sol-gel. Fine grained powders were produced using both procedures, which were analyzed using Scanning Electron Microscopy (SEM) and Thermo-Stimulated Luminescence (TSL). Results showed that neodymium ions incorporation is responsible for the creation of two new TSL peaks (125 and 265 degrees C) and, also, for the enhancement of the intrinsic TSL peak at 190 degrees C. An explanation was proposed for these observations. SEM gave the dimensions of the clusters produced by each method, showing that those obtained by Pechini are smaller than the ones produced by sol-gel; it can also explain the higher emission supplied by the first one. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The internal stresses and crystallographic texture in alpha-Al(2)O(3) scales grown on iron aluminides at 1100 degrees C were determined in situ using synchrotron X-ray diffraction. In the first hour of oxidation, alpha-Al(2)O(3) was formed by direct nucleation and by conversion from transition oxides (either theta-Al(2)O(3) or a mixed Fe-Al oxide). A sharp texture develops connected with the direct nucleation of alpha-Al(2)O(3), in contrast to the weaker texture observed in alpha-Al(2)O(3) originated by previous transformations, which also yielded tensile stresses in early oxidation stages. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of temperature on the fast fracture behavior of aluminum nitride with 5 wt% Y(2)O(3) ceramic were investigated. Four-point flexural strength and fracture toughness were measured in air at several temperatures (30-1,300 A degrees C). The flexural strength gradually decreased with the increase of temperature up to 1,000 A degrees C due to the change in the fracture mode from transgranular to intergranular, and then became almost constant up to 1,300 A degrees C. Two main flaw types as fracture origin were identified: small surface flaw and large pores. The volume fraction of the large pores was only 0.01%; however, they limited the strength on about 50% of the specimens. The fracture toughness decreased slightly up to 800 A degrees C controlled by the elastic modulus change, and then decreased significantly at 1,000 A degrees C due to the decrease in the grain-boundary toughness. Above 1,000 A degrees C, the fracture toughness increased significantly, and at 1,300 A degrees C, its value was close to that measured at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic assessment of an Al(2)O(3)-MnO pseudo-binary system has been carried out with the use of an ionic model. The use of the electro-neutrality principles in addition to the constitutive relations, between site fractions of the species on each sub-lattice, the thermodynamics descriptions of each solid phase has been determined to make possible the solubility description. Based on the thermodynamics descriptions of each phase in addition to thermo-chemical data obtained from the literature, the Gibbs energy functions were optimized for each phase of the Al(2)O(3)-MnO system with the support of PARROT(R) module from ThemoCalc(R) package. A thermodynamic database was obtained, in agreement with the thermo-chemical data extracted from the literature, to describe the Al(2)O(3)-MnO system including the solubility description of solid phases. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of trace additions of magnesium on the sintering of aluminum and its alloys is examined. Magnesium, especially at low concentrations, has a disproportionate effect on sintering because it disrupts the passivating Al2O3 layer through the formation of a spinel phase. Magnesium penetrates the sintering compact by solid-state diffusion, and the oxide is reduced at the metal-oxide interface. This facilitates solid-state sintering, as well as wetting of the underlying metal by sintering liquids, when these are present. The optimum magnesium concentration is approximately 0.1 to 1.0 wt pet, but this is dependent on the volume of oxide and, hence, the particle size, as well as the sintering conditions. Small particle-size fractions require proportionally more magnesium than large-size fractions do.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Ni catalysts supported on flyash treated by various chemical methods was tested for carbon dioxide reforming of methane. Ni catalyst on the flyash treated with CaO (Ni/Ash-CaO) shows high conversion and stability, being close to those of the well-reported Ni/Al2O3 and Ni/SiO2 catalysts with conversions approaching thermodynamic equilibrium levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equilibrium phase relations in the PbO-Al2O3-SiO2 system have been investigated experimentally by means of high-temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). The system has 21 primary phase fields including three monoxides (PbO, Al2O3, and SiO2), seven binary compounds (Al6Si2O13, PbAl2O4, PbAl12O19, Pb2Al2O5, PbSiO3, Pb2SiO4, and Pb4SiO6), and eleven ternary compounds (PbAl2Si2O8, Pb3Al10SiO20, Pb4Al2Si2O11, Pb4Al4SiO12, Pb4Al4Si3O16, Pb4Al4Si5O20, Pb5Al2Si10O28, Pb6Al2Si6O21, Pb8Al2Si4O19, Pb12Al2Si17O49, and Pb12Al2Si20O55). Three new ternary compounds, Pb4Al4SiO12, Pb4Al4Si5O20, and Pb12Al2Si17O49, were observed and characterized by EPMA. No extensive solid solution in any of the compounds was found in the present study. The liquidus isotherms were experimentally determined in most of the primary phase fields in the temperature range from 923 to 1873 K, and the ternary phase diagram of the PbO-Al2O3-SiO2 System has been constructed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dual catalyst bed system (Au/Fe2O3 + Pt-Pd/Al2O3) for eliminating hydrogen from the CO2 feed gas in urea synthesis is found to be far superior to commercially available and patented catalysts in catalytic activity. At relatively low temperatures, hydrogen is eliminated and coexistent CO is also oxidized completely to useful CO2. This can avoid effectively the accidental explosion of hydrogen-oxygen-ammonia mixed gases, thus ensuring the safety of urea synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Ni and Al additions on grain boundary silica in mechanically alloyed and hot isostatically pressed (HTPed) MoSi2 was investigated. Mechanical alloying Mo and Si in the absence of Al produced finely dispersed silica within a fine grained structure. Mechanically alloyed and HIPed Mo and Si with Ni and Al partially transformed the silica to crystalline oxide phases, including Al2O3. An improvement in high temperature properties is not expected due to the retention of a grain boundary silica film. Rapid grain growth resulted during HIPing, possibly due to the formation of a Ni/Fe/Al liquid phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence that trace concentrations Of SiO2 have on improving grain-boundary conduction via precursor scavenging using additional heat treatment at 1200 degreesC for 40 h before sintering was investigated. At a SiO2-impurity level (SIL) less than or equal to 160 ppm by weight, the grain-boundary resistivity (p(gb)) decreased to 20% of its value, while no improvement in grain-boundary conduction was found at a SIL greater than or equal to 310 ppm. The correlation between the resistance per unit grain-boundary area, p(gb), and average grain size indicated that the inhomogeneous distribution of the siliceous phase in the sample with a SIL greater than or equal to 310 ppm. hampered the scavenging reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al2O3 particles 65 pm), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al2O3 was detected by EDS and the amount calculated by digital analyses. Osteoblasts, were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al2O3 residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al2O3 residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al2O3 negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 588-597, 2008