1000 resultados para Al-Idrisi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by eegr = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s�1. At temperatures below 350°C and in the strain rate range 0.001�0.01 s�1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s�1 and an extrusion ratio of 10ratio1. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s�1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s�1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s�1 and a lower temperature of 425°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing map for hot working of Al alloy 2014-20vol.%Al2O3 particulate-reinforced cast-plus-extruded composite material has been generated covering the temperature range 300-500 degrees C and the strain rate range 0.001-10 s(-1) based on the dynamic materials model. The efficiency eta of power dissipation given by 2m/(m + 1), where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of superplasticity has been identified, with a peak efficiency of 62% occurring at 500 degrees C and 0.001 s(-1). The characteristics of this domain have been studied with the help of microstructural evaluation and hot-ductility measurements. Microstructural instability is predicted at higher strain rates above (ls(-1)) and lower temperatures (less than 350 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs). Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anion-deficient layered perovskite oxides of the formula, ACa2Nb3-xMxO10-x (A = Rb, Cs; M = Al, Fe) for 0 < x less-than-or-equal-to 1.0, possessing tetragonal structures similar to the parent ACa2Nb3O10, have been synthesized. The interlayer A cations in these materials are readily exchanged with protons in aqueous HNO3 to give the protonated derivatives, HCa2Nb3-xMxO10-x; the latter are solid Bronsted acids intercalating a number of organic amines including aniline (pK(a) = 4.63). The distribution of acid sites in the interlayer region of HCa2Nb2MO9 inferred from n-alkylamine intercalation suggests that oxygen vacancies and Nb/M atoms are disordered in the ACa2Nb2MO9 samples prepared at 1100-1200-degrees-C. Annealing a disordered sample of CsCa2Nb2AlO9 for a long time at lower temperatures tends to order the Nb/Al atoms and oxygen vacancies to produce octahedral (NbO6/2)-tetrahedral (AlO4/2)-octahedral (NbO6/2) layer sequence reminiscent of the brownmillerite structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anion-deficient perovskite oxides of the formula AM(1-x)Al(x)O(3-x) (A = Na or K; M = Nb or Ta) have been prepared for 0 < x less than or equal to 0.5. Diffraction experiments reveal that while the potassium compounds adopt orthorhombic/cubic perovskite structures similar to the parent KNbO3/KTaO3, the sodium compound, NaNb0.5Al0.5O2.5, possesses a brownmillerite/LaSr-CuAlO5-like superstructure. Al-27 NMR spectra show an exclusive tetrahedral oxygen coordination for AI(III) in Na-Nb0.5Al0.5O2.5 (I) and both tetrahedral and octahedral coordination for Al(III) in KNb0.5Al0.5O2.5 (II). The results suggest a long-range and short-range ordering of oxide ion vacancies in I and II respectively. Electrical conductivity measurements show a significant oxide ion conduction for KNb1-xAlxO3-x, with the conductivity increasing with x up to x = 0.5. The differences in the Arrhenius plots of the ionic conductivity of I and II have been rationalized in terms of the long-range and short-range ordering of oxide ion vacancies in the anion-deficient perovskite oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the mechanical alloying behaviour of elemental aluminium with diamond cubic elements Ge and Si. A metastable crystalline phase with rhombohedral crystal structure forms in Al-70 Ge-30 and Al-60 Ge-40 alloy compositions. The phase always coexists with elemental constituents and decomposes over a broad temperature range. No such metastable phase could be observed in the Al-Si system. We also report X-ray diffractometry and differential scanning calorimetry results suggestive of amorphization. Finally a comparison was made of the present result with that obtained in rapid solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic matrix composites of Al2O3-SiC-(Al,Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of Al2O3, alloy, and porosity in the composite can be controlled by proper selection of SLC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coexistence of quasicrystals and rational approximant structures (RAS) has been observed in melt-spun Al80Cr14Si6, Al80Mn14Si6 and Al75Mn10Cr5Si10 alloys. The presence of a b.c.c. alpha-AlMnSi phase in Al-Mn-Si and alpha-AlMnSi(Cr) phase in Al-Mn-Cr-Si has been seen. A multiple twinning around an irrational axis of the RAS has been reported in an aggregate of fine size cubic crystallites in all three alloys. Selected area diffraction patterns show that the crystalline aggregate symmetry is linked to the icosahedral point group symmetry (m35). Various ways of expressing the twin relationship in the cubic crystalline aggregates have been discussed. The thermal stability of the icosahedral phase at high temperatures reveals that the icosahedral phase in Al-Mn-Si and Al-Mn-Cr-Si alloys transforms to alpha-AlMnSi at temperatures of 690 and 670 K, respectively. In Al-Cr-Si alloy, heating to a high temperature (615 K) leads to the transformation of the icosahedral phase into a new metastable phase having an ordered cubic structure equivalent to alpha-AlMnSi. The occurrence of multiple twinning leading to icosahedral symmetry in the as-spun Al-Cr-Si alloy is presumably due to this metastable phase. Copyright (C) 1996 Acta Metallurgica Inc.