790 resultados para Agglomerative Hierarchical Clustering
Resumo:
The standard, ad-hoc stopping criteria used in decision tree-based context clustering are known to be sub-optimal and require parameters to be tuned. This paper proposes a new approach for decision tree-based context clustering based on cross validation and hierarchical priors. Combination of cross validation and hierarchical priors within decision tree-based context clustering offers better model selection and more robust parameter estimation than conventional approaches, with no tuning parameters. Experimental results on HMM-based speech synthesis show that the proposed approach achieved significant improvements in naturalness of synthesized speech over the conventional approaches. © 2011 IEEE.
Resumo:
Struyf, J., Dzeroski, S. Blockeel, H. and Clare, A. (2005) Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. In proceedings of the EPIA 2005 CMB Workshop
Resumo:
A system is described that tracks moving objects in a video dataset so as to extract a representation of the objects' 3D trajectories. The system then finds hierarchical clusters of similar trajectories in the video dataset. Objects' motion trajectories are extracted via an EKF formulation that provides each object's 3D trajectory up to a constant factor. To increase accuracy when occlusions occur, multiple tracking hypotheses are followed. For trajectory-based clustering and retrieval, a modified version of edit distance, called longest common subsequence (LCSS) is employed. Similarities are computed between projections of trajectories on coordinate axes. Trajectories are grouped based, using an agglomerative clustering algorithm. To check the validity of the approach, experiments using real data were performed.
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.
Resumo:
Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.
Resumo:
A hierarchical structure is used to represent the content of the semi-structured documents such as XML and XHTML. The traditional Vector Space Model (VSM) is not sufficient to represent both the structure and the content of such web documents. Hence in this paper, we introduce a novel method of representing the XML documents in Tensor Space Model (TSM) and then utilize it for clustering. Empirical analysis shows that the proposed method is scalable for a real-life dataset as well as the factorized matrices produced from the proposed method helps to improve the quality of clusters due to the enriched document representation with both the structure and the content information.
Resumo:
This paper proposes an innovative instance similarity based evaluation metric that reduces the search map for clustering to be performed. An aggregate global score is calculated for each instance using the novel idea of Fibonacci series. The use of Fibonacci numbers is able to separate the instances effectively and, in hence, the intra-cluster similarity is increased and the inter-cluster similarity is decreased during clustering. The proposed FIBCLUS algorithm is able to handle datasets with numerical, categorical and a mix of both types of attributes. Results obtained with FIBCLUS are compared with the results of existing algorithms such as k-means, x-means expected maximization and hierarchical algorithms that are widely used to cluster numeric, categorical and mix data types. Empirical analysis shows that FIBCLUS is able to produce better clustering solutions in terms of entropy, purity and F-score in comparison to the above described existing algorithms.
Resumo:
Capacity probability models of generating units are commonly used in many power system reliability studies, at hierarchical level one (HLI). Analytical modelling of a generating system with many units or generating units with many derated states in a system, can result in an extensive number of states in the capacity model. Limitations on available memory and computational time of present computer facilities can pose difficulties for assessment of such systems in many studies. A cluster procedure using the nearest centroid sorting method was used for IEEE-RTS load model. The application proved to be very effective in producing a highly similar model with substantially fewer states. This paper presents an extended application of the clustering method to include capacity probability representation. A series of sensitivity studies are illustrated using IEEE-RTS generating system and load models. The loss of load and energy expectations (LOLE, LOEE), are used as indicators to evaluate the application
Resumo:
Speaker diarization determines instances of the same speaker within a recording. Extending this task to a collection of recordings for linking together segments spoken by a unique speaker requires speaker linking. In this paper we propose a speaker linking system using linkage clustering and state-of-the-art speaker recognition techniques. We evaluate our approach against two baseline linking systems using agglomerative cluster merging (AC) and agglomerative clustering with model retraining (ACR). We demonstrate that our linking method, using complete-linkage clustering, provides a relative improvement of 20% and 29% in attribution error rate (AER), over the AC and ACR systems, respectively.
Speaker attribution of multiple telephone conversations using a complete-linkage clustering approach
Resumo:
In this paper we propose and evaluate a speaker attribution system using a complete-linkage clustering method. Speaker attribution refers to the annotation of a collection of spoken audio based on speaker identities. This can be achieved using diarization and speaker linking. The main challenge associated with attribution is achieving computational efficiency when dealing with large audio archives. Traditional agglomerative clustering methods with model merging and retraining are not feasible for this purpose. This has motivated the use of linkage clustering methods without retraining. We first propose a diarization system using complete-linkage clustering and show that it outperforms traditional agglomerative and single-linkage clustering based diarization systems with a relative improvement of 40% and 68%, respectively. We then propose a complete-linkage speaker linking system to achieve attribution and demonstrate a 26% relative improvement in attribution error rate (AER) over the single-linkage speaker linking approach.
Resumo:
This paper investigates the business cycle co-movement across countries and regions since 1950 as a measure for quantifying the economic interdependence in the ongoing globalisation process. Our methodological approach is based on analysis of a correlation matrix and the networks it contains. Such an approach summarises the interaction and interdependence of all elements, and it represents a more accurate measure of the global interdependence involved in an economic system. Our results show (1) the dynamics of interdependence has been driven more by synchronisation in regional growth patterns than by the synchronisation of the world economy, and (2) world crisis periods dramatically increase the global co-movement in the world economy.
Resumo:
Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
A nonparametric, hierarchical, disaggregative clustering algorithm is developed using a novel similarity measure, called the mutual neighborhood value (MNV), which takes into account the conventional nearest neighbor ranks of two samples with respect to each other. The algorithm is simple, noniterative, requires low storage, and needs no specification of the expected number of clusters. The algorithm appears very versatile as it is capable of discerning spherical and nonspherical clusters, linearly nonseparable clusters, clusters with unequal populations, and clusters with lowdensity bridges. Changing of the neighborhood size enables discernment of strong or weak patterns.