994 resultados para Age, 14C calibrated, CALIB 5.0.2 (Stuiver et al., 2005)
Resumo:
Diatom assemblages were employed to study temporal changes of Siberian river runoff on the Laptev Sea shelf. Using a correlation between freshwater diatoms (%) in core-top sediments and summer surface water salinities from the inner Kara Sea, salinity conditions were reconstructed for a site northeast of the Lena River Delta (present water depth 32 m) since 9 calendar years (cal) ka. The reconstruction indicate a strong, near-coastal, and river-influenced environment at the site until about 8.6 cal ka. Corroborated by comparison with other proxy records from further to the east, surface salinities increased from 9 to 14 until about 7.4 cal ka, owing to ongoing global sea level rise and synchronous southward shift of the coastline. Although riverine water became less influential at the site since then, salinities still varied between 12.5 and 15, particularly during the last 3.5 kyr. These more recent salinity fluctuations agree well with reconstructions from just north of the Lena Delta, emphasizing the strong linkage between shelf hydrography and riverine discharge patterns in Arctic Siberia.
Resumo:
As part of a wider paleoclimate and paleoceanographic study of Holocene-upper Pleistocene laminated sediments from the eastern equatorial Pacific and Peru continental margin, we completed 32 accelerator mass spectrometry (AMS) 14C dates from cores recovered during Ocean Drilling Program (ODP) Leg 201. Sample preparation and measurement were carried out at the ANTARES AMS facility, Australian Nuclear Science and Technology Organisation (ANSTO), in Sydney, Australia (Lawson et al., 2000, doi:10.1016/S0168-583X(00)00276-7; Fink et al., 2004, doi:10.1016/j.nimb.2004.04.025). Although the sediments are predominantly diatomaceous oozes (D'Hondt, Jørgensen, Miller, et al., 2003, doi:10.2973/odp.proc.ir.201.2003), they contain sufficient inorganic (e.g., foraminifer tests and nannofossil plates) and organic (Meister et al., 2005, doi:10.2973/odp.proc.sr.201.105.2005) carbon to allow 14C dating. These dates permitted us to reconstruct a history of sediment accumulation over the past 20 k.y., particularly on the Peru continental margin. In this report we present 14C AMS dates and other pertinent data from cores from Sites 1227, 1228, and 1229 collected during Leg 201 at the Peru continental margin.
Resumo:
Application of the 230Th normalization method to estimate sediment burial fluxes in six cores from the eastern equatorial Pacific (EEP) reveals that bulk sediment and organic carbon fluxes display a coherent regional pattern during the Holocene that is consistent with modern oceanographic conditions, in contrast with estimates of bulk mass accumulation rates (MARs) derived from core chronologies. Two nearby sites (less than 10 km apart), which have different MARs, show nearly identical 230Th-normalized bulk fluxes. Focusing factors derived from the 230Th data at the foot of the Carnegie Ridge in the Panama Basin are >2 in the Holocene, implying that lateral sediment addition is significant in this part of the basin. New geochemical data and existing literature provide evidence for a hydrothermal source of sediment in the southern part of the Panama Basin and for downslope transport from the top of the Carnegie Ridge. The compilation of core records suggests that sediment focusing is spatially and temporally variable in the EEP. During oxygen isotope stage 2 (OIS 2, from 13-27 ka BP), focusing appears even higher compared to the Holocene at most sites, similar to earlier findings in the eastern and central equatorial Pacific. The magnitude of the glacial increase in focusing factors, however, is strongly dependent on the accuracy of age models. We offer two possible explanations for the increase in glacial focusing compared to the Holocene. The first one is that the apparent increase in lateral sediment redistribution is partly or even largely an artifact of insufficient age control in the EEP, while the second explanation, which assumes that the observed increase is real, involves enhanced deep sea tidal current flow during periods of low sea level stand.
Resumo:
AMS radiocarbon ages have been determined on terrestrial macrofossils selected from the annually laminated sediments of lake Holzmaar (Germany). The radiocarbon chronology of this lake covers the last 12.6 ka. Comparison of the radiocarbon dated varve chronology with tree ring data shows that an additional 878 years have to be added to the varve chronology. The corrected 14C varve chronology of Holzmaar reaches back to ca. 13.8 ka cal. BP and compares favourably with the results from Soppensee (Switzerland) (Hajdas et al., 1993, doi:10.1007/BF00209748). The corrected ages for the onset and the end of the Younger Dryas biozone are 11,940 cal. BP and 11,490 cal. BP, respectively. The ash layer of the Laacher See volcanic eruption is dated at 12,201 ± 224 cal. BP and the Ulmener Tephra layer is dated at 10,904 cal. BP.
Resumo:
We use planktonic oxygen isotope (d18O) records spanning the last 30,000 years (kyr) to constrain the magnitude and spatial pattern of glacial cooling in the upwelling environment of the eastern equatorial Pacific (EEP). Fourteen new downcore d18O records were obtained from surface-dwelling planktonic foraminifera Globigerinoides sacculifer and Globigerinoides ruber in eight cores from the upwelling tongue of the EEP. All sites have sedimentation rates exceeding 5 cm/kyr and, with one exception, lie above the modern depth of the foraminiferal lysocline. Sites directly underlying the cool band of upwelling immediately south of the equator record mean late Holocene (LH)-Last Glacial Maximum (LGM) d18O amplitudes ranging between 1.0 and 1.3 per mil. We estimate that mean sea surface temperatures (SST) in this region during the LGM were on average 1.5 ± 0.5°C lower than the LH. Larger d18O amplitudes are observed in sites north of the equator, indicating a spatial pattern of reduced meridional SST gradient across the equator during the LGM. This result is supported by comparison of Mg/Ca SST reconstructions from two sites straddling the equator. We interpret the reduction of this gradient during the LGM as evidence for a less intense cold tongue-Intertropical Convergence Zone (ITCZ) frontal system, a more southerly position of the ITCZ, and weaker southeast equatorial trades in the EEP.