838 resultados para African fig fly
Resumo:
ObjectivesTo compare the sensitivity of inspections of cattle herds and adult fly trapping for detection of the Old World screw-worm fly (OWS). ProceduresThe incidence of myiases on animals and the number of OWS trapped with LuciTrap (R)/Bezzilure were measured concurrently on cattle farms on Sumba Island (Indonesia) and in peninsular Malaysia (two separate periods for the latter). The numbers of animal inspections and traps required to achieve OWS detection at the prevalent fly densities were calculated. ResultsOn Sumba Island, with low-density OWS populations, the sensitivity of herd inspections and of trapping for OWS detection was 0.30 and 0.85, respectively. For 95% confidence of detecting OWS, either 45 inspections of 74 animals or trapping with 5 sets of 4 LuciTraps for 14 days are required. In Malaysia, at higher OWS density, herd inspections of 600 animals (twice weekly, period 1) or 1600 animals (weekly, period 2) always detected myiases (sensitivity = 1), while trapping had sensitivities of 0.89 and 0.64 during periods 1 and 2, respectively. For OWS detection with 95% confidence, fewer than 600 and 1600 animals or 2 and 6 LuciTraps are required in periods 1 and 2, respectively. ConclusionsInspections of cattle herds and trapping with LuciTrap and Bezzilure can detect OWS populations. As a preliminary guide for OWS detection in Australia, the numbers of animals and traps derived from the Sumba Island trial should be used because the prevailing conditions better match those of northern Australia.
Resumo:
Yesterday morning came the news South African retailer Woolworths had offered $4 a share to acquire David Jones, a proposal that has the approval of the department store’s board. This offer, worth an estimated A$2.15 billion, represents a 25% premium over the current share price value. An earlier offer, from rival Myer, was rejected earlier this year. But who is Woolworths? Not to be confused with Australia’s largest supermarket, Woolworths SA is one of South Africa’s largest retailers.
Resumo:
The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the 'apple' type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings. © 2013 Blackwell Verlag GmbH.
Resumo:
This thesis investigated and compared barriers and facilitators of cervical screening among African-born refugee and non-refugee women living in Brisbane. Refugee women were more likely to have limited or no knowledge about cervical cancer and the screening test and also less likely to use Pap smear services than non-refugee women. The analysis identified belief systems, lack of knowledge about cervical cancer and screening practices, and lack of culturally appropriate screening programs as major barriers. In the context of health promotion interventions, these findings will contribute to addressing major differential screening needs among African immigrant refugee and non-refugee women.
Resumo:
Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.
Resumo:
Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.
Resumo:
The forest tree species Khaya senegalensis (Desr.) A. Juss. occurs in a belt across 20 African countries from Senegal-Guinea to Sudan-Uganda where it is a highly important resource. However, it is listed as Vulnerable (IUCN 2015-3). Since introduction in northern Australia around 1959, the species has been planted widely, yielding high-value products. The total area of plantations of the species in Australia exceeds 15,000 ha, mostly planted in the Northern Territory since 2006, and includes substantial areas across 60-70 woodlots and industrial plantations established in north-eastern Queensland since the early-1990s and during 2005-2007 respectively. Collaborative conservation and tree improvement by governments began in the Northern Territory and Queensland in 2001 based on provenance and other trials of the 1960s-1970s. This work has developed a broad base of germplasm in clonal seed orchards, hedge gardens and trials (clone and progeny). Several of the trials were established collaboratively on private land. Since the mid-2000s, commercial growers have introduced large numbers of provenance-bulk and individual-tree seedlots to establish industrial plantations and trials, several of the latter in collaboration with the Queensland Government. Provenance bulks (>140) and families (>400) from 17 African countries are established in Australia, considered the largest genetic base of the species in a single country outside Africa. Recently the annual rate of industrial planting of the species in Australia has declined, and R&D has been suspended by governments and reduced by the private sector. However, new commercial plantings in the Northern Territory and Queensland are proposed. In domesticating a species, the strategic importance of a broad genetic base is well known. The wide range of first- and advanced-generation germplasm of the species established in northern Australia and documented in this paper provides a sound basis for further domestication and industrial plantation and woodlot expansion, when investment conditions are favourable
Resumo:
Queensland fruit fly (Bactrocera tryoni) is a significant quarantine pest of stonefruit. To access domestic markets within Australia stonefruit require treatment to ensure they are free of fruit flies. Due to the recent restriction of the organophosphate pesticides, fenthion and dimethoate, the stonefruit industry now faces a significant challenge to control fruit flies. In this field trial we quantified the level of control achieved by a 'best case' systems approach that relied on currently available and registered control measures. This system included protein bait sprays, Male Annihilation Technique, insecticide cover sprays of trichlorfon, maldison and spinetoram and inspection and culling of damaged fruit. We found that in two out of the three trial orchards, packed fruit samples from Gatton (QLD) and Bangalow (NSW) had low levels of fruit fly infestation; 1.47 and 2.97% respectively. However, at the third property located at Alstonville (NSW) a high level of infestation (51.63%) was found in packed nectarines, which was likely attributed to the late implementation of the systems approach. This trial has demonstrated the potential for fruit fly control without relying on fenthion, however further modification of the system is needed to refine and increase efficacy.
Resumo:
Management of cucumber fly (Bactrocera cucumis) has relied heavily on cover sprays of broad spectrum insecticides such as dimethoate and fenthion. Long term access to these insecticides is uncertain, and their use can disrupt integrated pest management programs for other pests such as whitefly, aphids and mites. Application of a protein bait spray for fruit fly control is common practice in tree crops. However, vegetable crops present different challenges as fruit flies are thought to enter these crops only to oviposit, spending the majority of their time in roosting sites outside of the cropping area. Perimeter baiting of non-crop vegetation was developed overseas as a technique for control of melon fly (B. cucurbitae) in cucurbits in Hawaii. More recent work has refined the technique further, with certain types of perimeter vegetation proving more attractive to melon fly than the sorghum or corn crops which are commonly utilised. Trials were performed to investigate the potential of developing a similar system for cucumber fly. Commercially available fruit fly baits were compared for attractiveness to cucumber fly. Eight plant species were evaluated for their relative attractiveness to cucumber flies as roosting sites. Differences were observed in the number of flies feeding at protein bait applied to each of the plants. Results are discussed in the context of the development of a perimeter baiting system for cucumber fly in cucurbit crops.
Resumo:
The frugivorous ‘true’ fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a non-resourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or non-aggregated; (ii) mating system was resource or non-resource based; (iii) flies utilised possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was non-resource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behaviour align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a non-resource based, aggregation system for which we also have evidence that land-marking may be involved. This article is protected by copyright. All rights reserved
Resumo:
White nectarines (Prunus persica var. nucipersica) were fumigated with methyl bromide (MB) at a nominal treatment dose of 18 g m-3 at 18°C for 5 h and 30 min as a quarantine disinfestation treatment against Bactrocera tryoni, the Queensland fruit fly. Three large scale trials were conducted against each of the four immature lifestages, eggs and first, second and third instars. There were no survivors from the estimated 43,614 eggs, 41,873 first instars, 41,345 second instars and 33,549 third instars treated, thereby resulting in an efficacy of GROTERDAN99.99% mortality at the 95% confidence level for each lifestage. Of the 12 trials reported herein, the highest concentration of MB, sampled from the chamber headspace analysed by gas chromatography, was 18.7 g m-3. The maximum chamber temperature from 5 min readings was 19.7°C and the maximum fruit core temperature was 19.5°C. The treatment time for all trials was exactly 5.5 h. Thus the recommended treatment dose to disinfest nectarines from B. tryoni is 19.0 g m-3 MB at 20.0°C for 5.5 h. Fruit quality trials were conducted on white nectarines at three combinations of treatment parameters: 15 g m-3 MB at 19°C for 5.25 h; 18 g m-3 MB at 19°C for 5.5 h and 21 g m-3 MB at 19°C for 5.5 h. The fruit were stored at 0, 4 and 8 days at 4°C and 8 days at 4°C followed by 4 d at 22°C. They were then were assessed for skin colour, flesh colour, skin defects, flesh defects, fruit weight loss, flesh firmness, total soluble solids, titratable acidity and rots. There was no significant difference between untreated control and MB treated fruits in any of the parameters measured. Thus the treatments did not have adverse effects on fruit quality.
Resumo:
Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.
Resumo:
This thesis used multidisciplinary approaches which greatly enhance our understanding of population structure and can be particularly powerful tools for resolving variation of melon fly over geographic and temporal scales, and for determining invasive pathways. The results from this thesis reinforce the value of integrating multiple data sets to better understand and resolve natural variation within an important pest to determine whether there are cryptic species, discrete lineages or host races, and to identify dispersal pathways in an invasive pest. These results are instructive for regional biosecurity, trade and quarantine, and provide important background for future area-wide management programmes. The integrative methodology adopted in this thesis is applicable to a variety of other insect pests.