894 resultados para Adenosylmethionine Decarboxylase Inhibitor
Resumo:
Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-fa
Resumo:
Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide
Resumo:
By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta -bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Sertoli cells play a central role in the control and maintenance of spermatogenesis. Isolated Sertoli cells of mouse and rat testes have been shown to secrete plasminogen activator (PA) and a plasminogen activator inhibitor type-1 (PAI-1) in culture. In this study, we have investigated the hormonal regulation of PA and PAI-1 activities in cultured monkey Sertoli cells. Sertoli cells (5x10(5) cells/well) isolated from infant rhesus monkey testes were preincubated at 35 degrees C for 16 h in 24-well plates precoated with poly(D-lysine) (5 mu g/cm(2)) in 0.5 mi McCoy's 5a medium containing 5% of fetal calf serum and further incubated for 48 h in 0.5 mi serum-free medium with or without various hormones or other compounds, PA as well as PAI-1 activities in the conditioned media were assayed by fibrin overlay and reverse fibrin autography techniques respectively. The Sertoli cells in vitro secreted only tissue-type PA (tPA), no detectable amount of urokinase-type PA (uPA) could be observed, Monkey Sertoli cells were also capable of secreting PAI-1, Immunocytochemical studies indicated that both tPA and PAI-1 positive staining localized in the Sertoli cells, spermatids and residual bodies of the seminiferous epithelium; Northern blot analysis further confirmed the presence of both tPA and PAI-1 mRNA in monkey Sertoli cells. Addition of follicle-stimulating hormone (FSH) or cyclic adenosine monophosphate (cAMP) derivatives or cAMP-generating agents and gonadotrophin-releasing hormone (GnRH) agonist or phorbol ester (PMA) to the cell culture significantly increased tPA activity. PAI-1 activity in the culture was also enhanced by these reagents except 8-bromo-dibutyryl-cAMP, forskolin and 3-isobutyl-1-methylxanthin (MIX) which greatly stimulated tPA activity, whereas decreased PAI-1 activity, implying that neutralization of PAI-1 activity by tile high level of tPA in the conditioned media may occur. These data suggest that increased intracellular signals which activate protein kinase A (PKA), or protein kinase C (PKC) can modulate Sertoli cell tPA and PAI-1 activities, The concomitant induction of PA and PAI-1 by the same reagents in the Sertoli cells may reflect a finely tuned regulatory mechanism in which PAI-1 could limit the excession of the proteolysis.
Resumo:
A chymotrypsin inhibitor, designated NA-CI, was isolated from the venom of the Chinese cobra Naja atra by three-step chromatography. It inhibited bovine (x-chymotrypsin with a K-i of 25 nM. The molecular mass of NA-CI was determined to be 6403.8 Da by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) analysis. The complete amino acid sequence was determined after digestion of S-carboxymethylated inhibitor with Staphylococcus aureus V8 protease and porcine trypsin. NA-CI was a single polypeptide chain composed of 57 amino acid residues. The main contact site with the protease (PI) has a Phe, showing the specificity of the inhibitor. NA-CI shared great similarity with the chymotrypsin inhibitor from Naja naja venom (identities = 89.5%) and other snake venom protease inhibitors. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The dissociation of methane hydrate in the presence of ethylene glycol (11.45 mol.L-1) at 277.0 K was studied using canonical ensemble (NVT) molecular dynamics simulations. Results show that hydrate dissociation starts from the surface layer of the solid hydrate and then gradually expands to the internal layer. Thus, the solid structure gradually shrinks until it disappears. A distortion of the hydrate lattice structure occurs first and then the hydrate evolves from a fractured frame to a fractional fragment. Finally, water molecules in the hydrate construction exist in the liquid state. The inner dissociating layer is, additionally, coated by a liquid film formed from outer dissociated water molecules outside. This film inhibits the mass transfer performance of the inner molecules during the hydrate dissociation process.
Resumo:
HR212, a recombinant protein expressed in Escherichia coli, has been previously reported to inhibit HIV-1 membrane fusion at low nanomolar level. Here we report that HR212 is effective in blocking laboratory strain HIV-1IIIB entry and replication with EC50 values of 3.92±0.62 and 6.59±1.74 nM, respectively, and inhibiting infection by clinic isolate HIV-1KM018 with EC50 values of 44.44±10.20 nM, as well as suppressing HIV-1- induced cytopathic effect with an EC50 value of 3.04±1.20 nM. It also inhibited HIV-2ROD and HIV-2CBL-20 entry and replication in the μM range. Notably, HR212 was highly effective against T20-resistant strains with EC50 values ranging from 5.09 to 7.75 nM. Unlike T20, HR212 showed stability sufficient to inhibit syncytia formation in a time-of-addition assay, and was insensitive to proteinase K digestion. These results suggest that HR212 has great potential to be further developed as novel HIV-1 fusion inhibitor for treatment of HIV/ AIDS patients, particularly for those infected by T20-resistant variants.
Resumo:
Serine proteinase inhibitors (SPIs) play important roles in host physiological and immunological processes in all multicellular organisms. A novel Kazal-type SPI gene was cloned from the Zhikong scallop Chlamys farreri (designated as CfKZSPI) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfKZSPI was of 1788 nucleotides with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) encoding a polypeptide of 509 amino acids with a putative signal peptide of 22 amino acids. The deduced amino acid sequence of CfKZSPI contained 12 tandem Kazal domains with high similarity to other Kazal-type SPIs. The temporal expression of CfKZSPI in hemocytes after Vibrio anguillorum challenge was recorded by quantitative real-time RT-PCR. The relative mRNA expression level of CfKZSPI was up-regulated and reached 43.6-fold at 3 h post-challenge. After a decrease at 6 h, the expression Level increased again and reached 207.8-fold at 12 h post-challenge. The 12th Kazal domain of CfKZSPI was recombined into pET-32a(+) and expressed in Escherichia coli Rosetta-gami (DE3) to investigate its inhibitory activity. The purified recombinant protein (rCf KZSPI-1 2) showed significant inhibitory activity against trypsin but no activity against thrombin. When the molar ratio of inhibitor to trypsin reached 1:1, almost 90% of the enzyme activity could be inhibited, which suggested that one molecule of rCfKZSPI-12 was able to inhibit one molecule of trypsin. Kinetics analysis with Dixon plot showed that the inhibition constant (K-i) of rCfKZSPI-12 to trypsin was 173 nmol L-1. These results indicated that CfKZSPI was a novel Kazal-type SPI with significant inhibitory activity against trypsin, and was suspected to be involved in scallop immune response. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
N-Acetylchitooligosaccharide (N-acetyl-COs) was prepared by N-acetylation of chitooligosaccharide (COs). In vitro study using human umbilical vein endothelial cells (HUVECs) revealed that both N-acetyl-COs and COs inhibited the proliferation of HUVECs by inducing apoptosis. Treatment of HUVECs by N-acetyl-COs resulted in a significant reduction of density of the migration cells and repressed tubulogenesis process. The antiangiogenic effects of the oligosaccharides were further evaluated using in vivo zebrafish angiogenesis model, and the results showed that both oligosaccharides inhibited the growth of subintestinal vessels (SIV) of zebrafish embryos in a dose-dependent manner, as observed by endogenous alkaline phosphatase (EAP) staining assay. In contrast, no cytotoxicity was found when treating the NIH3T3 and several other cancer cells with the oligosaccharides. Our results also confirmed the antiangiogenic activity of N-acetyl-COs was significantly stronger than the parent oligosaccharide, COs. (c) 2007 Published by Elsevier Inc.
Resumo:
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator and has been proved to be an effective target for the treatment of type 2 diabetes mellitus. Bis-(2,3-dibromo-4,5-dihydroxyphenyl)-methane 7 was first reported as a natural bromophenol with significant inhibition against PTP1B which was isolated from red algae Rhodomela confervoides. Intrigued by its astonishing activity (IC50 = 2.4 mu mol/L), compound 7 was synthesized with the overall yield of 24% and evaluated for its PTP1B inhibitory activity compared with natural compound. (C) 2008 Li Jun Han. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.