967 resultados para Additive Manufacturing 3D Printing FDM TPU nanocompisiti
Resumo:
Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.
In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.
In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.
In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.
In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.
Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.
Resumo:
The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. % Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.
Resumo:
Il Selective Laser Melting è un processo di additive manufacturing che consiste nella realizzazione di componenti metallici tridimensionali, sovrapponendo strati di polvere, che viene via via fusa mediante una sorgente controllata di energia (laser). È una tecnica produttiva che viene utilizzata da più di 20 anni ma solo ora sta assumendo un ruolo rilevante nell’industria. È un processo versatile ma complesso che ad oggi permette di processare solo un numero limitato di leghe. Il presente lavoro di tesi riguarda in particolare lo studio, dal punto di vista microstrutturale, di componenti in acciaio inossidabile austenitico AISI-316L processato mediante Selective Laser Melting, attività svolta in collaborazione con il Gruppo di Tecnologia – Laser del Dipartimento di Ingegneria Industriale. Alla base dell’attività sperimentale è stata svolta anche un’ampia ricerca bibliografica per chiarire lo stato dell’arte sul processo e sulla lega in questione, la microstruttura, i difetti, le proprietà meccaniche e l’effetto dei parametri di processo sul componente finito. Le attività sperimentali hanno previsto una prima fase di caratterizzazione delle polveri di 316L, successivamente la caratterizzazione dei campioni prodotti tramite selective laser melting, in termini di microstruttura e difetti correlati al processo. Le analisi hanno rivelato la presenza di una microstruttura “gerarchica” costituita da melt pool, grani e celle submicrometriche. I difetti rinvenuti sono pori, delaminazione degli strati, particelle di polvere non fuse. Infine è stata eseguita la caratterizzazione frattografica dei campioni sottoposti a prove di trazione e di fatica a flessione rotante (attività condotte dal gruppo Laser) per identificare la morfologia di frattura e i siti di innesco della cricca di fatica.
Resumo:
This presentation was both an illustrated lecture and a published paper presented at the IMPACT 9 Conference Printmaking in the Post-Print Age, Hangzhou China 2015. It was an extension of the exhibition catalogue essay for the Bluecoat Gallery Exhibition of the same name. In 2014 I curated an exhibition The Negligent Eye at the Bluecoat Gallery in Liverpool as the result of longstanding interest in scanning and 3D printing and the role of these in changing the field of Print within Fine Art Practice. In the aftermath of curatingshow I have continued to reflect on this material with reference to the writings of Vilém Flusser and Hito Steyerl. The work in the exhibition came from a wide range of artists of all generations most of whom are not explicitly located within Printmaking. Whilst some work did not use any scanning technology at all, a shared fascination with the particular translating device of the systematizing ‘eye’ of a scanning digital video camera, flatbed or medical scanner was expressed by all the work in the show. Through writing this paper I aim to extend my own understanding of questions, which arose from the juxtapositions of work and the production of the accompanying catalogue. The show developed in dialogue with curators Bryan Biggs and Sarah-Jane Parsons of the Bluecoat Gallery who sent a series of questions about scanning to participating artists. In reflecting upon their answers I will extend the discussions begun in the process of this research. A kind of created attention deficit disorder seems to operate on us all today to make and distribute images and information at speed. What value do ways of making which require slow looking or intensive material explorations have in this accelerated system? What model of the world is being constructed by the drive to simulated realities toward ever-greater resolution, so called high definition? How are our perceptions of reality being altered by the world-view presented in the smooth colourful ever morphing simulations that surround us? The limitations of digital technology are often a starting point for artists to reflect on our relationship to real-world fragility. I will be looking at practices where tactility or dimensionality in a form of hard copy engages with these questions using examples from the exhibition. Artists included in the show were: Cory Arcangel, Christiane Baumgartner, Thomas Bewick, Jyll Bradley, Maurice Carlin, Helen Chadwick, Susan Collins, Conroy/Sanderson, Nicky Coutts, Elizabeth Gossling, Beatrice Haines, Juneau Projects, Laura Maloney, Bob Matthews, London Fieldworks (with the participation of Gustav Metzger), Marilène Oliver, Flora Parrott, South Atlantic Souvenirs, Imogen Stidworthy, Jo Stockham, Wolfgang Tillmans, Alessa Tinne, Michael Wegerer, Rachel Whiteread, Jane and Louise Wilson. Scanning, Art, Technology, Copy, Materiality.
Resumo:
Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.
Resumo:
A oportunidade de produção de biomassa microalgal tem despertado interesse pelos diversos destinos que a mesma pode ter, seja na produção de bioenergia, como fonte de alimento ou servindo como produto da biofixação de dióxido de carbono. Em geral, a produção em larga escala de cianobactérias e microalgas é feita com acompanhamento através de análises físicoquímicas offline. Neste contexto, o objetivo deste trabalho foi monitorar a concentração celular em fotobiorreator raceway para produção de biomassa microalgal usando técnicas de aquisição digital de dados e controle de processos, pela aquisição de dados inline de iluminância, concentração de biomassa, temperatura e pH. Para tal fim foi necessário construir sensor baseado em software capaz de determinar a concentração de biomassa microalgal a partir de medidas ópticas de intensidade de radiação monocromática espalhada e desenvolver modelo matemático para a produção da biomassa microalgal no microcontrolador, utilizando algoritmo de computação natural no ajuste do modelo. Foi projetado, construído e testado durante cultivos de Spirulina sp. LEB 18, em escala piloto outdoor, um sistema autônomo de registro de informações advindas do cultivo. Foi testado um sensor de concentração de biomassa baseado na medição da radiação passante. Em uma segunda etapa foi concebido, construído e testado um sensor óptico de concentração de biomassa de Spirulina sp. LEB 18 baseado na medição da intensidade da radiação que sofre espalhamento pela suspensão da cianobactéria, em experimento no laboratório, sob condições controladas de luminosidade, temperatura e fluxo de suspensão de biomassa. A partir das medidas de espalhamento da radiação luminosa, foi construído um sistema de inferência neurofuzzy, que serve como um sensor por software da concentração de biomassa em cultivo. Por fim, a partir das concentrações de biomassa de cultivo, ao longo do tempo, foi prospectado o uso da plataforma Arduino na modelagem empírica da cinética de crescimento, usando a Equação de Verhulst. As medidas realizadas no sensor óptico baseado na medida da intensidade da radiação monocromática passante através da suspensão, usado em condições outdoor, apresentaram baixa correlação entre a concentração de biomassa e a radiação, mesmo para concentrações abaixo de 0,6 g/L. Quando da investigação do espalhamento óptico pela suspensão do cultivo, para os ângulos de 45º e 90º a radiação monocromática em 530 nm apresentou um comportamento linear crescente com a concentração, apresentando coeficiente de determinação, nos dois casos, 0,95. Foi possível construir um sensor de concentração de biomassa baseado em software, usando as informações combinadas de intensidade de radiação espalhada nos ângulos de 45º e 135º com coeficiente de determinação de 0,99. É factível realizar simultaneamente a determinação inline de variáveis do processo de cultivo de Spirulina e a modelagem cinética empírica do crescimento do micro-organismo através da equação de Verhulst, em microcontrolador Arduino.
Resumo:
ASHRAE 34, based on ASTM E681, was improved by identifying and rectifying deficiencies in ASTM E681. An ASTM E681 apparatus and procedure was developed with gaseous refrigerant testing in mind. The plumbing was improved by ensuring that the pressure readings could be constantly monitored while decreasing leakage potential. An original electrical system was designed and constructed for the ignition system. Additionally, a control panel was constructed to isolate hazardous electrical elements, and facilitate the testing, while simultaneously organizing the critical plumbing and ignition components. 3D printing efficiently produced heat-resistant, nonreactive, and structurally stable lower electrode spacers, propellers, and propeller bars. The heating system was designed to ensure even temperature throughout the apparatus. The humidity system was designed to accurately condition the air. Recommendations to improve ASTM E681 are provided. The research can be built on to improve the accuracy and reproducibility of ASTM E681.
Resumo:
Lo scopo della presente tesi è sviluppare un ambiente per l'ottimizzazione strutturale di componenti per applicazione aerospaziale utilizzando codici open-source. In particolare, il codice Salome viene utilizzato per il disegno automatico delle strutture, il programma Code Aster permette di effettuare l'analisi agli elementi finiti del componente, mentre Octave viene utilizzato per svolgere l'ottimizzazione basata su un algoritmo euristico e per integrare fra di loro i differenti codici. Le tecniche di ottimizzazione dei componenti stanno rivestendo sempre più importanza visto che le moderne tecniche di Additive Manufacturing permettono di realizzare strutture molto complesse che un tempo non era conveniente (o possibile) realizzare con asportazione di materiale. Nella prima parte della tesi si descrivono gli strumenti software utilizzati e la loro integrazione al fine di parametrizzare la generazione di geometrie ed effettuare in modo automatico analisi strutturali. Successivamente si descrivono tre casi di studio in cui la metodologia è stata sperimentata: un primo caso di validazione in cui si è applicato il metodo alla definizione della geometria di minimo peso per una trave a sbalzo con carico concentrato, un secondo test di ottimizzazione di un longherone per aeromobile, un terzo caso applicativo legato alla ottimizzazione di un serbatoio per fluidi in pressione da utilizzare su un satellite.
Resumo:
Braille is a communication tool in decline, in America by 80% since 1950, and in the UK to the extent that only 1% of blind people are now thought to read Braille.1, 2 There are a variety of causal factors, including the phasing out of Braille instruction due to the educational mainstreaming of blind children and the resistance to learning Braille by those who lose sight later in life.3Braille is a writing system of raised dots that allows blind people to read and write tactilely. Each Braille character comprises a cell of six potentially raised dots, two dots across and three dots down. It is designed only to communicate the message and does not convey the tonality provided by visual fonts.However, in his book Design Meets Disability, Graham Pullin, observes that: “Braille is interesting and beautiful, as abstract visual and tactile decoration, intriguing and indecipherable to the nonreader ” and continues; “…braille could be decorative for sighted people.”4I assert that the increasing abandonment of Braille frees it from its restrictive constraints, opening it to exploration and experimentation, and that this may result in Braille becoming dynamic expression for the sighted, as well as the partially sighted and blind.Printmaking is well suited for this exploration. Printmaking processes and techniques can result in prints aesthetically compelling to both senses of sight and touch. Established approaches, such as flocking, varnishes, puff-ink, embossing and die cut, combined with experiments in new techniques in laser cutting and 3D printing, create visually and texturally vibrant prints.In this paper I will detail my systematic investigation of sensually expressive printmaking concentrating on the issues surrounding Braille as a printmaking design element paying particular attention to the approaches and techniques used not only in producing its visual style but to those techniques used to keep it integrally tactile.
Resumo:
L’objectif du vaste projet de recherche dans lequel s’inscrit ce mémoire est de guérir le diabète de type 1 en fabriquant un pancréas bioartificiel vascularisé contenant des cellules bêta (i.e. les cellules sécrétant l’insuline). Ce dispositif permettrait de rendre aux personnes atteintes par le diabète de type 1 la capacité de sécréter par elles-mêmes de l’insuline et de réguler leur glycémie. La vascularisation est actuellement un enjeu de taille dans le domaine du génie tissulaire. La plupart des tissus incorporant des cellules générées par le génie tissulaire sont actuellement fortement limités en épaisseur faute d’être vascularisés adéquatement. Pour les tissus dont l’épaisseur dépasse 400 μm, la vascularisation est nécessaire à la survie de la plupart des cellules qui autrement souffriraient d’hypoxie, les empêchant ainsi d’accomplir leurs fonctions [1]. Ce mémoire présente le développement et la mise en service d’un dispositif d’extrusion tridimensionnelle de sucre vitrifié pour la vascularisation d’un pancréas bioartificiel. Ce dispositif a été développé au laboratoire de recherche sur les procédés d’impression 3D ainsi qu’au bureau de design du département de génie mécanique de l’Université Laval. Grâce à cette technique d’impression 3D novatrice et à la caractérisation du procédé, il est maintenant possible de produire rapidement et avec précision des structures temporaires en sucre vitrifié pour la fabrication de réseaux vasculaires tridimensionnels complexes. Les structures temporaires peuvent, après leur production, être utilisées pour réaliser le moulage rapide de constructions vascularisées avec des matériaux tels que du polydiméthylsiloxane (PDMS) ou des hydrogels chargés de cellules biologiques. De par la nature du matériel utilisé, les moules temporaires peuvent être facilement et rapidement dissous dans une solution aqueuse et laisser place à un réseau de canaux creux sans créer de rejets toxiques, ce qui représente un avantage majeur dans un contexte de bio-ingénierie.
Resumo:
Il progetto di dottorato che verrà presentato in questa tesi è focalizzato sullo sviluppo di un metodo sperimentale per la produzione di protesi personalizzate utilizzando il processo di fabbricazione additiva di Selective Laser Melting (SLM). L’obiettivo è quello di definire una condizione di processo ottimizzata per applicazioni in ambito chirurgico che possa essere generalizzabile, ovvero che ne garantisca la riproducibilità al variare dell’anatomia del paziente e che rappresenti la base per estendere il metodo ad altre componenti protesiche. Il lavoro si è sviluppato lungo due linee principali, la cui convergenza ha permesso di realizzare prototipi di protesi complete utilizzando un solo processo: da una parte la produzione di componenti a massima densità per il raggiungimento di elevate resistenze meccaniche, buona resistenza ad usura e corrosione e controllo di tensioni residue e deformazione delle parti stampate. Dall’altra si sono studiate strutture reticolari a geometria e porosità controllata per favorire l’osteointegrazione della componente protesica post impianto. In questo studio sono stati messe a confronto le possibili combinazioni tra parametri di processo e sono state individuate le correlazioni con le proprietà finali dei componenti stampati. Partendo da queste relazioni si sono sviluppate le strategie tecnologiche per la progettazione e la produzione dei componenti. I test sperimentali svolti e i risultati ottenuti hanno dimostrato la fattibilità dell’utilizzo del processo SLM per la produzione di protesi personalizzate e sono stati fabbricati i primi prototipi funzionali. La fabbricazione di protesi personalizzate richiede, però, anche la progettazione e la produzione di strumentario chirurgico ad hoc. Per questo motivo, parallelamente allo studio della lega di Cromo Cobalto, sono stati eseguiti i test anche su campioni in INOX 316L. Anche in questo caso è stato possibile individuare una finestra operativa di processo che garantisse proprietà meccaniche comparabili, e in alcuni casi superiori, a quelle ottenute con processi convenzionali.
Resumo:
Dando continuità all’attività di ricerca intrapresa durante il mio precedente tirocinio presso il Dipartimento di Ingegneria Industriale DIN di Bologna, lo scopo della mia tesi è stato quello di chiarire i meccanismi di stabilità di fase della lega ad alta entropia CoCrFeMnNi ed esplorare la sua natura metastabile alle medio-alte temperature (tra i 450-1150°C). Nell’ottica di possibili future applicazioni industriali, è stato inoltre valutato l’effetto che la produzione via Additive Manufacturing può avere su proprietà e comportamenti delle leghe ad alta entropia. Sperimentalmente sono state fatte importanti osservazioni, a volte in contrasto con la letteratura precedente, che aprono la strada ad ulteriori e più specifiche indagini verso la comprensione dei complessi meccanismi che recentemente hanno reso queste leghe così interessanti per la ricerca a livello mondiale.
Resumo:
Additive Manufacturing (AM) is nowadays considered an important alternative to traditional manufacturing processes. AM technology shows several advantages in literature as design flexibility, and its use increases in automotive, aerospace and biomedical applications. As a systematic literature review suggests, AM is sometimes coupled with voxelization, mainly for representation and simulation purposes. Voxelization can be defined as a volumetric representation technique based on the model’s discretization with hexahedral elements, as occurs with pixels in the 2D image. Voxels are used to simplify geometric representation, store intricated details of the interior and speed-up geometric and algebraic manipulation. Compared to boundary representation used in common CAD software, voxel’s inherent advantages are magnified in specific applications such as lattice or topologically structures for visualization or simulation purposes. Those structures can only be manufactured with AM employment due to their complex topology. After an accurate review of the existent literature, this project aims to exploit the potential of the voxelization algorithm to develop optimized Design for Additive Manufacturing (DfAM) tools. The final aim is to manipulate and support mechanical simulations of lightweight and optimized structures that should be ready to be manufactured with AM with particular attention to automotive applications. A voxel-based methodology is developed for efficient structural simulation of lattice structures. Moreover, thanks to an optimized smoothing algorithm specific for voxel-based geometries, a topological optimized and voxelized structure can be transformed into a surface triangulated mesh file ready for the AM process. Moreover, a modified panel code is developed for simple CFD simulations using the voxels as a discretization unit to understand the fluid-dynamics performances of industrial components for preliminary aerodynamic performance evaluation. The developed design tools and methodologies perfectly fit the automotive industry’s needs to accelerate and increase the efficiency of the design workflow from the conceptual idea to the final product.
Resumo:
The rate of diagnosis and treatment of degenerative spine disorders is increasing, increasing the need for surgical intervention. Posterior spine fusion is one surgical intervention used to treat various spine degeneration pathologies To minimize the risk of complications and provide patients with positive outcomes, preoperative planning and postsurgical assessment are necessary. This PhD aimed to investigate techniques for the surgical planning and assessment of spine surgeries. Three main techniques were assessed: stereophotogrammetric motion analysis, 3D printing of complex spine deformities and finite element analysis of the thoracolumbar spine. Upon reviewing the literature on currently available spine kinematics protocol, a comprehensive motion analysis protocol to measure the multi-segmental spine motion was developed. Using this protocol, the patterns of spine motion in patients before and after posterior spine fixation was mapped. The second part investigated the use of virtual and 3D printed spine models for the surgical planning of complex spine deformity correction. Compared to usual radiographic images, the printed model allowed optimal surgical intervention, reduced surgical time and provided better surgeon-patient communication. The third part assessed the use of polyetheretherketone rods auxiliary to titanium rods to reduce the stiffness of posterior spine fusion constructs. Using a finite element model of the thoracolumbar spine, the rods system showed a decrease in the overall stress of the uppermost instrumented vertebra when compared to regular fixation approaches. Finally, a retrospective biomechanical assessment of a lumbopelvic reconstruction technique was investigated to assess the patients' gait following the surgery, the implant deformation over the years and the extent of bony fusion between spine and implant. In conclusion, this thesis highlighted the need to provide surgeons with new planning and assessment techniques to better understand postsurgical complications. The methodologies investigated in this project can be used in the future to establish a patient-specific planning protocol.