972 resultados para Adaptive methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notorious "dimensionality curse" is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently. Copyright Springer-Verlag 2005

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many variables that are of interest in social science research are nominal variables with two or more categories, such as employment status, occupation, political preference, or self-reported health status. With longitudinal survey data it is possible to analyse the transitions of individuals between different employment states or occupations (for example). In the statistical literature, models for analysing categorical dependent variables with repeated observations belong to the family of models known as generalized linear mixed models (GLMMs). The specific GLMM for a dependent variable with three or more categories is the multinomial logit random effects model. For these models, the marginal distribution of the response does not have a closed form solution and hence numerical integration must be used to obtain maximum likelihood estimates for the model parameters. Techniques for implementing the numerical integration are available but are computationally intensive requiring a large amount of computer processing time that increases with the number of clusters (or individuals) in the data and are not always readily accessible to the practitioner in standard software. For the purposes of analysing categorical response data from a longitudinal social survey, there is clearly a need to evaluate the existing procedures for estimating multinomial logit random effects model in terms of accuracy, efficiency and computing time. The computational time will have significant implications as to the preferred approach by researchers. In this paper we evaluate statistical software procedures that utilise adaptive Gaussian quadrature and MCMC methods, with specific application to modeling employment status of women using a GLMM, over three waves of the HILDA survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes two algorithms for adaptive power and bit allocations in a multiple input multiple output multiple-carrier code division multiple access (MIMO MC-CDMA) system. The first is the greedy algorithm, which has already been presented in the literature. The other one, which is proposed by the authors, is based on the use of the Lagrange multiplier method. The performances of the two algorithms are compared via Monte Carlo simulations. At present stage, the simulations are restricted to a single user MIMO MC-CDMA system, which is equivalent to a MIMO OFDM system. It is assumed that the system operates in a frequency selective fading environment. The transmitter has a partial knowledge of the channel whose properties are measured at the receiver. The use of the two algorithms results in similar system performances. The advantage of the Lagrange algorithm is that is much faster than the greedy algorithm. ©2005 IEEE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A re-examination of fundamental concepts and a formal structuring of the waveform analysis problem is presented in Part I. eg. the nature of frequency is examined and a novel alternative to the classical methods of detection proposed and implemented which has the advantage of speed and independence from amplitude. Waveform analysis provides the link between Parts I and II. Part II is devoted to Human Factors and the Adaptive Task Technique. The Historical, Technical and Intellectual development of the technique is traced in a review which examines the evidence of its advantages relative to non-adaptive fixed task methods of training, skill assessment and man-machine optimisation. A second review examines research evidence on the effect of vibration on manual control ability. Findings are presented in terms of percentage increment or decrement in performance relative to performance without vibration in the range 0-0.6Rms'g'. Primary task performance was found to vary by as much as 90% between tasks at the same Rms'g'. Differences in task difficulty accounted for this difference. Within tasks vibration-added-difficulty accounted for the effects of vibration intensity. Secondary tasks were found to be largely insensitive to vibration except secondaries which involved fine manual adjustment of minor controls. Three experiments are reported next in which an adaptive technique was used to measure the % task difficulty added by vertical random and sinusoidal vibration to a 'Critical Compensatory Tracking task. At vibration intensities between 0 - 0.09 Rms 'g' it was found that random vibration added (24.5 x Rms'g')/7.4 x 100% to the difficulty of the control task. An equivalence relationship between Random and Sinusoidal vibration effects was established based upon added task difficulty. Waveform Analyses which were applied to the experimental data served to validate Phase Plane analysis and uncovered the development of a control and possibly a vibration isolation strategy. The submission ends with an appraisal of subjects mentioned in the thesis title.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Two real world data sets, containing electricity load demands and foreign exchange market prices, are used to test several different methods, ranging from linear models with fixed parameters, to non-linear models which adapt both parameters and model order on-line. Training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. The results of our experiments show that there are advantages to be gained in tracking real world non-stationary data through the use of more complex adaptive models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concern over the quality of delivering video streaming services in mobile wireless networks is addressed in this work. A framework that enhances the Quality of Experience (QoE) of end users through a quality driven resource allocation scheme is proposed. To play a key role, an objective no-reference quality metric, Pause Intensity (PI), is adopted to derive a resource allocation algorithm for video streaming. The framework is examined in the context of 3GPP Long Term Evolution (LTE) systems. The requirements and structure of the proposed PI-based framework are discussed, and results are compared with existing scheduling methods on fairness, efficiency and correlation (between the required and allocated data rates). Furthermore, it is shown that the proposed framework can produce a trade-off between the three parameters through the QoE-aware resource allocation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A real-time adaptive resource allocation algorithm considering the end user's Quality of Experience (QoE) in the context of video streaming service is presented in this work. An objective no-reference quality metric, namely Pause Intensity (PI), is used to control the priority of resource allocation to users during the scheduling process. An online adjustment has been introduced to adaptively set the scheduler's parameter and maintain a desired trade-off between fairness and efficiency. The correlation between the data rates (i.e. video code rates) demanded by users and the data rates allocated by the scheduler is taken into account as well. The final allocated rates are determined based on the channel status, the distribution of PI values among users, and the scheduling policy adopted. Furthermore, since the user's capability varies as the environment conditions change, the rate adaptation mechanism for video streaming is considered and its interaction with the scheduling process under the same PI metric is studied. The feasibility of implementing this algorithm is examined and the result is compared with the most commonly existing scheduling methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problems for intellectualisation for man-machine interface and methods of self-organization for network control in multi-agent infotelecommunication systems have been discussed. Architecture and principles for construction of network and neural agents for telecommunication systems of new generation have been suggested. Methods for adaptive and multi-agent routing for information flows by requests of external agents- users of global telecommunication systems and computer networks have been described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems and methods for adaptive control and multi-agent processing of information in global telecommunication and computer networks (TCN) are discussed. Criteria for controllability and communication ability (routing ability) of dataflows are described. Multi-agent model for exchange of divided information resources in global TCN has been suggested. Peculiarities for adaptive and intelligent control of dataflows in uncertain conditions and network collisions are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is focused on the optimisation of resource utilisation in wireless mobile networks with the consideration of the users’ experienced quality of video streaming services. The study specifically considers the new generation of mobile communication networks, i.e. 4G-LTE, as the main research context. The background study provides an overview of the main properties of the relevant technologies investigated. These include video streaming protocols and networks, video service quality assessment methods, the infrastructure and related functionalities of LTE, and resource allocation algorithms in mobile communication systems. A mathematical model based on an objective and no-reference quality assessment metric for video streaming, namely Pause Intensity, is developed in this work for the evaluation of the continuity of streaming services. The analytical model is verified by extensive simulation and subjective testing on the joint impairment effects of the pause duration and pause frequency. Various types of the video contents and different levels of the impairments have been used in the process of validation tests. It has been shown that Pause Intensity is closely correlated with the subjective quality measurement in terms of the Mean Opinion Score and this correlation property is content independent. Based on the Pause Intensity metric, an optimised resource allocation approach is proposed for the given user requirements, communication system specifications and network performances. This approach concerns both system efficiency and fairness when establishing appropriate resource allocation algorithms, together with the consideration of the correlation between the required and allocated data rates per user. Pause Intensity plays a key role here, representing the required level of Quality of Experience (QoE) to ensure the best balance between system efficiency and fairness. The 3GPP Long Term Evolution (LTE) system is used as the main application environment where the proposed research framework is examined and the results are compared with existing scheduling methods on the achievable fairness, efficiency and correlation. Adaptive video streaming technologies are also investigated and combined with our initiatives on determining the distribution of QoE performance across the network. The resulting scheduling process is controlled through the prioritization of users by considering their perceived quality for the services received. Meanwhile, a trade-off between fairness and efficiency is maintained through an online adjustment of the scheduler’s parameters. Furthermore, Pause Intensity is applied to act as a regulator to realise the rate adaptation function during the end user’s playback of the adaptive streaming service. The adaptive rates under various channel conditions and the shape of the QoE distribution amongst the users for different scheduling policies have been demonstrated in the context of LTE. Finally, the work for interworking between mobile communication system at the macro-cell level and the different deployments of WiFi technologies throughout the macro-cell is presented. A QoEdriven approach is proposed to analyse the offloading mechanism of the user’s data (e.g. video traffic) while the new rate distribution algorithm reshapes the network capacity across the macrocell. The scheduling policy derived is used to regulate the performance of the resource allocation across the fair-efficient spectrum. The associated offloading mechanism can properly control the number of the users within the coverages of the macro-cell base station and each of the WiFi access points involved. The performance of the non-seamless and user-controlled mobile traffic offloading (through the mobile WiFi devices) has been evaluated and compared with that of the standard operator-controlled WiFi hotspots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.