903 resultados para Adapted motor activity
Resumo:
OBJETIVO: Avaliar a confiabilidade do questionário Lista de Atividades Físicas em crianças. MÉTODOS: O estudo é parte da adaptação transcultural do questionário, realizado com 83 escolares de sete a dez anos, matriculados do segundo ao quinto ano do ensino fundamental da cidade de São Paulo, SP, em 2008. O questionário foi respondido pela criança por meio de entrevista individual, apresenta lista com 21 atividades físicas moderadas a vigorosas realizadas no dia anterior, é dividido em períodos (antes, durante e após a escola) e possui seção de avaliação da entrevista. O questionário permite quantificar: tempo em atividades físicas e sedentárias; e custos metabólicos total e ponderado. A confiabilidade foi avaliada comparando-se duas entrevistas realizadas com intervalo médio de três horas. Para a seção C (avaliação da entrevista), compararam-se dados da primeira entrevista e de um avaliador externo. Utilizaram-se a proposta de Bland & Altman e os coeficientes de correlação intraclasse e de correlação de concordância de Lin na avaliação da confiabilidade. RESULTADOS: Os limites inferiores dos coeficientes de correlação intraclasse para os desfechos analisados variaram de 0,84 a 0,96. A precisão e concordância variaram, respectivamente, de 0,83 a 0,97 e de 0,99 a 1. A reta estimada a partir de pares de valores obtidos nas duas aplicações para atividade física indica elevada precisão dos dados. O item da entrevista com pior resultado foi a habilidade em estimar tempo (regular em 27,7% das entrevistas). Os itens da seção C apresentaram coeficientes de correlação intraclasse entre 0,60 e 0,70, exceto o nível de cooperação (0,46). CONCLUSÕES: A Lista de Atividades Físicas apresenta alta confiabilidade para aferir atividade física e sedentária do dia anterior em crianças.
Resumo:
Nepeta cataria (catnip) is a plant used in pet toys and to treat human diseases. Catnip has also been used in the treatment of some depressive disorders. In this paper, we studied the antidepressant, anxiogenic, and motor activity effects of acute and repeated feeding of chow enriched with 10% N. cataria leaves and the acute and repeated administration of apolar and polar extracts of N. cataria leaves in male mice. The results showed that repeated feeding and acute and repeated administration with the apolar extract reduced immobility in the behavioral despair test but did not alter elevated plus maze and open-field parameters. Acute feeding and the acute and repeated administration of the polar extracts of N. cataria leaves did not alter the behavior of mice. These data suggest that N. cataria has antidepressant properties. Moreover, this antidepressant activity was present in the apolar extract.
Resumo:
O estudo descreve as características do padrão de atividade física da população adulta das capitais de Estados brasileiros e do Distrito Federal em 2006. Os dados foram coletados pelo sistema de vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico (Vigitel) em uma amostra probabilística da população com 18 ou mais anos de idade (n=54.369). Foram analisados dois indicadores: ativo no lazer; e sedentário. Os indivíduos ativos no lazer foram 14,9%, a maioria homens. A caminhada é a modalidade mais comum, para ambos os sexos. A freqüência de ativos no lazer aumenta com a escolaridade e diminui com a idade. O sedentarismo já atingiu 29,2% da população adulta, com maior freqüência no sexo masculino, e aumenta com a idade e com a escolaridade. O perfil de atividade física é insatisfatório em todas as cidades, o que determina a necessidade de mais esforços no estímulo à prática da atividade física
Resumo:
OBJETIVO: Analisar a relação entre atividade física durante o segundo trimestre de gestação e baixo peso ao nascer, prematuridade e restrição de crescimento intra-uterino. MÉTODOS: Estudo de caso-controle realizado no município de São Paulo, em 2005. Foram estudados 273 recém-nascidos de baixo peso e 546 controles. Dentre os casos foram selecionadas duas sub-amostras: 117 nascimentos pré-termo e 132 com restrição de crescimento intra-uterino (n=132) e seus respectivos controles. As informações foram obtidas mediante entrevistas com as puérperas e transcrição de dados dos prontuários. Foram realizadas análises de regressão logística múltipla condicional e hierarquizada. RESULTADOS: Foi identificado como fator de proteção para baixo peso ao nascer a realização de atividades leves por mais de sete horas diárias (ORaj:0,61; IC 95 por cento :0,39;0,94), para a qual identificou-se relação do tipo dose-resposta (p de tendência=0,026), e tendência similar na análise da restrição de crescimento intra-uterino (ORaj:0,51; IC 95 por cento :0,26;0,97). A realização de atividades domésticas associou-se como fator protetor tanto contra o baixo peso ao nascer quanto à prematuridade (p de tendência=0,013 e 0,035, respectivamente). Foi detectado efeito de proteção contra prematuridade para a caminhada no lazer. CONCLUSÕES: Atividades físicas leves, como caminhadas, durante o segundo trimestre de gestação exercem efeito protetor independente sobre o baixo peso ao nascer, a prematuridade e a restrição de crescimento intrauterino
Resumo:
This study assessed the effects of haptic information on the postural control systems of individuals with intellectual disabilities (ID), through the use of a nonrigid tool that we call the ""anchor system"" (e.g., ropes attached to graduated weights that rest on the floor). Eleven participants with ID were asked to stand, blindfolded, on a balance beam placed at two heights (10 and 20 cm), for 30 s, while using the anchor system at two weights. The lighter anchor weight appeared to improve the individuals' balance in contrast to a control task condition; therefore, we concluded that haptic sensitivity was more significant in helping to orient the body than was the anchor's mechanical support alone.
Resumo:
The cell signaling cascades that mediate pigment movements in crustacean chromatophores are not yet well established, although Ca(2+) and cyclic nucleotide second messengers are involved. Here, we examine the participation of cyclic guanosine monophosphate (cGMP) in pigment aggregation triggered by red pigment concentrating hormone (RPCH) in the red ovarian chromatophores of freshwater shrimp. In Ca(2+)-containing (5.5 mmol l(-1)) saline, 10 mu mol l(-1) dibutyryl cGMP alone produced complete pigment aggregation with the same time course (approximate to 20 min) and peak velocity (approximate to 17 mu m/min) as 10(-8) mol l(-1) RPCH; however, in Ca(2+)-free saline (9 X 10(-11) mol l(-1) Ca(2+)), db-cGMP was without effect. The soluble guanylyl cyclase (GC-S) activators sodium nitroprusside (SNP, 0.5 mu mol l(-1)) and 3-morpholinosydnonimine (SIN-1, 100 mu mol l(-1)) induced moderate aggregation by themselves (approximate to 35%-40%) but did not affect RPCH-triggered aggregation. The GC-S inhibitors zinc protoporphyrin IX (ZnPP-XI, 30 mu mol l(-1)) and 6-anilino-5,8-quinolinedione (LY83583, 10 mu mol l(-1)) partially inhibited RPCH-triggered aggregation by approximate to 35%. Escherichia coli heat-stable enterotoxin (STa, 1 mu mol l(-1)), a membrane-receptor guanylyl cyclase stimulator, did not induce or affect RPCH-triggered aggregation. We propose that the binding of RPCH to an unknown membrane-receptor type activates a Ca(2+)-dependent signaling cascade coupled via cytosolic guanylyl cyclase and cGMP to protein kinase G-phosphorylated proteins that regulate aggregation-associated, cytoskeletal molecular motor activity. This is a further example of a cGMP signaling cascade mediating the effect of a crustacean X-organ neurosecretory peptide.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
In the course of daily living, humans frequently encounter situations in which a motor activity, once initiated, becomes unnecessary or inappropriate. Under such circumstances, the ability to inhibit motor responses can be of vital importance. Although the nature of response inhibition has been studied in psychology for several decades, its neural basis remains unclear. Using transcranial magnetic stimulation, we found that temporary deactivation of the pars opercularis in the right inferior frontal gyrus selectively impairs the ability to stop an initiated action. Critically, deactivation of the same region did not affect the ability to execute responses, nor did it influence physiological arousal. These findings confirm and extend recent reports that the inferior frontal gyrus is vital for mediating response inhibition.
Resumo:
The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles - tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) - in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 perpendicular to 22.0; IG = 26.2 perpendicular to 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 perpendicular to 13.3; IG = 55.8 perpendicular to 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot-ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.
Resumo:
The rhizomes of Dryopteris species have popularly been used as vermifuge in flatworm infections. The aim of this work was to evaluate the in vitro schistosomicidal activity of some phloroglucinol compounds, obtained from the rhizomes of Dryopteris species, against Schistosoma mansoni adult worms. All worm pairs were dead after 24 h of incubation with aspidin 25 to 100 mu M (1), flavaspidic acid 50 and 100 mu M (2), methylene-bis-aspidinol 100 mu M (3), and desaspidin 25 to 100 mu M (4). Worms incubated with 1 (25 to 100 mu M) and 2 (50 to 100 mu M) showed decrease motor activity with tegumental alterations, while 3 (100 mu M) and 4 (10 to 100 mu M) showed decrease motor activity without tegumental alterations. Desaspidinol (5) and filicinic acid (6), at the tested concentrations (10 to 100 mu M), did not show activity against adult worms of S. mansoni. Praziquantel (10 mu M), used as positive control, caused death of the parasites and tegumental alterations without separation of worms. In the groups treated with 100 A mu M of compounds 1-4, the viability of the adult worms was similar to the positive control group, in which the worms were dead. Also, both the egg productions and the development of eggs produced by the adult worms were inhibited by the incubation with compounds 1-4 (10 and 100 mu M) in comparison with the negative control (RPMI 1640 medium). It is suggested that the in vitro schistosomicidal effects of phloroglucinols derivatives 1, 2, 3, and 4 may be related to the inhibition of oxidative phosphorylation pathway in S. mansoni. The present results confirmed the traditional indications of rhizomes from Dryopteris species, which possess phloroglucinol compounds, in the treatment of tapeworm infections.
Resumo:
Background The aim of this study was to validate a biomagnetic method (alternate current biosusceptometry, ACB) for monitoring gastric wall contractions in rats. Methods In vitro data were obtained to establish the relationship between ACB and the strain-gauge (SG) signal amplitude. In vivo experiments were performed in pentobarbital-anesthetized rats with SG and magnetic markers previously implanted under the gastric serosa or after ingestion of magnetic material. Gastric motility was quantified from the tracing amplitudes and frequency profiles obtained by Fast Fourier Transform. Key Results The correlation between in vitro signal amplitudes was strong (R = 0.989). The temporal cross-correlation coefficient between the ACB and SG signal amplitude was higher (P < 0.0001) in the postprandial (88.3 +/- 9.1 V) than in the fasting state (31.0 +/- 16.9 V). Irregular signal profiles, low contraction amplitudes, and smaller signal-to-noise ratios explained the poor correlation between techniques for fasting-state recordings. When a magnetic material was ingested, there was also strong correlation in the frequency and signal amplitude and a small phase-difference between the techniques. The contraction frequencies using ACB were 0.068 +/- 0.007 Hz (postprandial) and 0.058 +/- 0.007 Hz (fasting) (P < 0.002) and those using SG were 0.066 +/- 0.006 Hz (postprandial) and 0.059 +/- 0.008 Hz (fasting) (P < 0.005). Conclusions & Inferences In summary, ACB is reliable for monitoring gastric wall contractions using both implanted and ingested magnetic materials, and may serve as an accurate and sensitive technique for gastrointestinal motility studies.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.