980 resultados para Adams, Sarah Flower, 1805-1848.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to morphological similarities between Triatoma maculata and T. pseudomaculata, which comprise the "maculate complex", both had been regarded as the same species until 1964. Considering that the studies on triatomine hybridization permit hypotheses formulation concerning origin and divergence of species, enabling a quantitative analysis of taxonomic relationships between species, the present investigation was aimed at broadening further understanding related to the capacity of hybrid production by determining the degree of reproductive isolation between T. maculata and T. pseudomaculata. Our results have demonstrated that T. maculata and T. pseudomaculata showed no differences regarding reproduction patterns and they are able to cross, generating infertile hybrids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Exposure assessment to a single pesticide does not capture the complexity of the occupational exposure. Recently, pesticide use patterns analysis has emerged as an alternative to study these exposures. The aim of this study is to identify the pesticide use pattern among flower growers in Mexico participating in the study on the endocrine and reproductive effects associated with pesticide exposure. Methods A cross-sectional study was carried out to gather retrospective information on pesticide use applying a questionnaire to the person in charge of the participating flower growing farms. Information about seasonal frequency of pesticide use (rainy and dry) for the years 2004 and 2005 was obtained. Principal components analysis was performed. Results Complete information was obtained for 88 farms and 23 pesticides were included in the analysis. Six principal components were selected, which explained more than 70% of the data variability. The identified pesticide use patterns during both years were: 1. fungicides benomyl, carbendazim, thiophanate and metalaxyl (both seasons), including triadimephon during the rainy season, chlorotalonyl and insecticide permethrin during the dry season; 2. insecticides oxamyl, biphenthrin and fungicide iprodione (both seasons), including insecticide methomyl during the dry season; 3. fungicide mancozeb and herbicide glyphosate (only during the rainy season); 4. insecticides metamidophos and parathion (both seasons); 5. insecticides omethoate and methomyl (only rainy season); and 6. insecticides abamectin and carbofuran (only dry season). Some pesticides do not show a clear pattern of seasonal use during the studied years. Conclusions The principal component analysis is useful to summarise a large set of exposure variables into smaller groups of exposure patterns, identifying the mixtures of pesticides in the occupational environment that may have an interactive effect on a particular health effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Food-deceptive pollination, in which plants do not offer any food reward to their pollinators, is common within the Orchidaceae. As food-deceptive orchids are poorer competitors for pollinator visitation than rewarding orchids, their occurrence in a given habitat may be more constrained than that of rewarding orchids. In particular, the success of deceptive orchids strongly relies on several biotic factors such as interactions with co-flowering rewarding species and pollinators, which may vary with altitude and over time. Our study compares generalized food-deceptive (i.e. excluding sexually deceptive) and rewarding orchids to test whether (i) deceptive orchids flower earlier compared to their rewarding counterparts and whether (ii) the relative occurrence of deceptive orchids decreases with increasing altitude. Methods To compare the flowering phenology of rewarding and deceptive orchids, we analysed data compiled from the literature at the species level over the occidental Palaearctic area. Since flowering phenology can be constrained by the latitudinal distribution of the species and by their phylogenetic relationships, we accounted for these factors in our analysis. To compare the altitudinal distribution of rewarding and deceptive orchids, we used field observations made over the entire Swiss territory and over two Swiss mountain ranges. Important Findings We found that deceptive orchid species start flowering earlier than rewarding orchids do, which is in accordance with the hypotheses of exploitation of naive pollinators and/or avoidance of competition with rewarding co-occurring species. Also, the relative frequency of deceptive orchids decreases with altitude, suggesting that deception may be less profitable at high compared to low altitude.