194 resultados para Actinobacillus actinomycetemcomitans
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mastitis occurrence in mares is low if compared to other livestock species. The microorganisms often isolated and detected in milk and mammary gland secretions of mares are Streptococcus beta-haemolytica, Staphylococcus spp., Pseudomonas aeruginosa, Actinobacillus spp., and enterobacter. The present experiment was designed to evaluate the main microorganisms present in the milk of healthy mares and having a mammary infection. One hundred and ten mammary glands from 55 lactating mares were analyzed, ranging from 15 to 150 d post-partum. The mastitis diagnostic was performed through analysis of the milk via the screened test of the mug with dark background (Tamis), mammary gland inflammation and/or systemic signs. The subclinical mammary gland infection was characterized via the California Mastitis Test (CMT). From the 55 lactating mares, 2 (3.64%) had clinical mastitis. Following the CMT, the mares presented: 13 (23.60%), 7 (12.72%), and 12 (21.88%) scores from 1+, 2+, and 3+, respectively. From the 110 mamary glands were analysed, in 47 (85.45%) of these samples strains of microorganisms were isolated. In summary, results from our experiment suggest a low occurrence of clinical mastitis in lactating mares.
Resumo:
Mastits is considered uncommon disease in mares. Streptococcus equi, Staphylococcus sp., Corynebacterium sp., Actinobacillus sp., Nocardia sp. and enterobacterias are major microorganisms involved in equine mammary infections. The disease is commonly related to traumatic lesions in mammary glands and teats. Edema, fibrosis, masses to palpation of glands, and viscous to seropurulent milk are mainly clinical signs observed in affected animals. The diagnosis is based on clinical exam of mammary glands and microbiological culture of the milk. There are no standard to use of indirect exams on diagnosis, including California Mastits Test and Somatic Cell Count. Systemic antimicrobials are recommended in therapy, based on previous “in vitro” susceptibility microbiological test. No specific control measures are indicated in equine mastits. The present study reviewed the mastits in mares, with emphasis to etiology, epidemiology findings, clinical manifestation, diagnosis, treatment and control aspects.
Resumo:
A sample of 608 adult pigs from Cape York and adjacent islands was examined for parasites and their serum tested for livestock diseases associated with the Queensland tropics. Feral pigs from North Queensland pose a significant health threat to humans with the incidence of Spargana (the plerocercoid of Spirometra erinacei) through the consumption of undercooked pork. Meliodosis (Pseudomonas pseudomalleO. Leptospirosis (L. yar. pomona). and Brucellosis (Brucella suis) are capable of infecting humans directly during unhygienic butchering of infected carcasses. In North Queensland, the widespread intermingled distribution of feral pigs and cattle increases the potential for the transmission of Actinobacillus, Leptospirosis, and Brucellosis from feral pigs to cattle. Both Europeans and Aborigines on Cape York also raise wild-caught feral pigs for meat. It is important to realize that parasites and diseases are present in young pigs and that poor husbandry practices increase the risk of infection from several parasites, i.e., Lungworm (Metastrongylus sp.) Stomach worm (Physocephalus sexalatus. Hvostrongvlus rubidus). Thorny headed worm (Macracanthorrhynchus hirudinaceus) and Kidney worm (Stephanurus dentatus). Heavy infection of these parasites reduce growth rates and cause unthriftiness in infected ani¬mals.
Resumo:
The 15-deoxy-(Delta 12,14)-PG J(2) (15d-PGJ(2)) has demonstrated excellent anti-inflammatory results in different experimental models. It can be used with a polymeric nanostructure system for modified drug release, which can change the therapeutic properties of the active principle, leading to increased stability and slower/prolonged release. The aim of the current study was to test a nano-technological formulation as a carrier for 15d-PGJ(2), and to investigate the immunomodulatory effects of this formulation in a mouse periodontitis model. Poly (D, L-lactide-coglycolide) nanocapsules (NC) were used to encapsulate 15d-PGJ(2). BALB/c mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) that were treated daily during 15 d with 1, 3, or 10 mu g/kg 15d-PGJ(2)-NC. The animals were sacrificed, the submandibular lymph nodes were removed for FACS analysis, and the jaws were analyzed for bone resorption by morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by reverse transcriptase-quantitative PCR, Western blotting, or ELISA. Infected animals treated with the 15d-PGJ(2)-NC presented lower bone resorption than infected animals without treatment (p < 0.05). Furthermore, infected animals treated with 10 mu g/kg 15d-PGJ(2)-NC had a reduction of CD4(+)CD25(+)FOXP3(+) cells and CD4/CD8 ratio in the submandibular lymph node (p < 0.05). Moreover, CD55 was upregulated, whereas RANKL was downregulated in the gingival tissue of the 10 mu g/kg treated group (p < 0.05). Several proinflammatory cytokines were decreased in the group treated with 10 mu g/kg 15d-PGJ(2)-NC, and high amounts of 15d-PGJ(2) were observed in the gingiva. In conclusion, the 15d-PGJ(2)-NC formulation presented immunomodulatory effects, decreasing bone resorption and inflammatory responses in a periodontitis mouse model. The Journal of Immunology, 2012, 189: 1043-1052.
Resumo:
Objective: To verify if mini-implant mobility is affected by the presence of periodontopathogens, frequently associated with peri-implantitis. Materials and Methods: The surfaces of 31 mini-implants used for skeletal anchorage in orthodontic patients were evaluated. Polymerase chain reaction was used for identification of the presence of DNA from three different periodontopathogens (P. intermedia [Pi], A. actinomycetemcomitans [Aa], and P. gingivalis [Pg]) in 16 mini-implants without mobility (control group) and 15 mini-implants with mobility (experimental group). Results: The results showed that Pi was present in 100% of the samples, from both groups: Aa was found in 31.3% of the control group and in 13.3% of the experimental group. Pg was detected in 37.4% of the control group and in 33.3% of the experimental group. The Fisher exact test and the odds ratio (OR) values for Aa and Pg (OR = 0.34; 95% confidence interval [CI]: 0.05-2.10 and OR = 0.61; 95% Cl: 0.13-2.79, respectively) showed no significant association (P > .05) between the periodontopathogens studied and the mobility of the mini-implants. Conclusions: It can be concluded that the presence of Aa, Pi, and Pg around mini-implants is not associated with mobility. (Angle Orthod. 2012;82:591-595.)
Resumo:
Periodontitis comprises a group of multifactorial diseases in which periodontopathogens accumulate in dental plaque and trigger host chronic inflammatory and immune responses against periodontal structures, which are determinant to the disease outcome. Although unusual cases of non-inflammatory destructive periodontal disease (NIDPD) are described, their pathogenesis remains unknown. A unique NIDPD case was investigated by clinical, microbiological, immunological and genetic tools. The patient, a non-smoking dental surgeon with excessive oral hygiene practice, presented a generalized bone resorption and tooth mobility, but not gingival inflammation or occlusion problems. No hematological, immunological or endocrine alterations were found. No periodontopathogens (A. actinomycetemcomitans, P. gingivalis, F. nucleatum and T. denticola) or viruses (HCMV, EBV-1 and HSV-1) were detected, along with levels of IL-1 beta and TNF-alpha in GCF compatible with healthy tissues. Conversely ALP, ACP and RANKL GCF levels were similar to diseased periodontal sites. Genetic investigation demonstrated that the patient carried some SNPs, as well HLA-DR4 (*0404) and HLA-B27 alleles, considered risk factors for bone loss. Then, a less vigorous and diminished frequency of toothbrushing was recommended to the patient, resulting in the arrest of alveolar bone loss, associated with the return of ALP, ACP and RANKL in GCF to normality levels. In conclusion, the unusual case presented here is compatible with the previous description of NIDPD, and the results that a possible combination of excessive force and frequency of mechanical stimulation with a potentially bone loss prone genotype could result in the alveolar bone loss seen in NIDPD.
Resumo:
Aim: The primary aim of this longitudinal study was to evaluate additional effects of 4-week chlorhexidine digluconate (CHX) gel treatments to control Aggregatibacter actinomycetemcomitans counts in children after professional dental prophylaxis. Porphyromonas gingivalis and Streptococcus mutans counts were also determined to evaluate the secondary effects of anti-plaque treatments on microbial shifts. Methods: Twenty-six children with A. actinomycetemcomitans counts >4 log10/ mL of saliva and/or Quigley-Hein plaque index >3.0 were enrolled in this study. Patients were randomly assigned to groups GI (placebo gel), GII (0.5% CHX gel), GIII (1% CHX gel), and GIV (2% CHX gel). Four sessions of treatment were performed during 4 weeks after a session of professional dental prophylaxis. Real-Time polymerase chain reaction (PCR) was used to determine viable microorganism counts in non-stimulated whole saliva samples collected at baseline, one week, one month and three months after interruption of treatments. Results: A reduction of all bacterial counts was detected after the 3-month follow-up in all groups. Lower counts of P. gingivalis were achieved from 1 week on after treatments. The 2% CHX concentration seemed to contribute to lower A. actinomycetemcomitans levels and increase S. mutans levels. Conclusions: Professional dental prophylaxis was effective to control salivary levels of A. actinomycetemcomitans, P. gingivalis and S. mutans. Additional antimicrobial effects, however, were not observed by the combination of professional dental prophylaxis and 4-week chlorhexidine gel treatments.
Resumo:
Neutrophils play an important role in periodontitis by producing nitric oxide (NO) and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP) 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS)-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and Escherichia coli-LPS (Ec-LPS). qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens.
Resumo:
La ricerca si è focalizzata su due degli aspetti di interesse odontoiatrico più diffusi: la carie dentaria e la parodontite cronica. Il problema della carie dentaria è stato studiato in una popolazione di 39 soggetti affetti da cardiopatia congenita in cui la scarsa igiene orale è fattore di rischio per problematiche di salute generale e soprattutto per lo sviluppo di endocardite infettiva. I dati osservati e confrontati con quelli di un omogeneo gruppo di controllo dimostrano che nella dentatura decidua questi bambini hanno più denti cariati, come dimostrato dalla significativa differenza dell'indice dmft. Nella dentatura permanente non si osservano differenze tra i due gruppi. La carica microbica totale rilevata nella saliva e la presenza di Streptococcus mutans non mostrano differenze tra i due gruppi. I problemi di parodontite cronica sono stati studiati in un gruppo di 352 soggetti italiani adulti in cui si è definita la prevalenza dei 6 più importanti patogeni parodontali e la possibile correlazione con parametri clinici (pus, sanguinamento al sondaggio - BOP, profondità di sondaggio della tasca parodontale – PPD). Tra le 6 specie batteriche ricercate, quello di più frequente riscontro è stato Fusobacterium nucleatum (95%), mentre quello con carica batterica più alta è stato Tannerella forsythia. La carica batterica di Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia e Fusobacterium nucleatum ha mostrato una correlazione diretta con il BOP e la presenza di pus. Inoltre, si è riscontrato che la carica batterica di tutte le specie (tranne Aggregatibacterium actinomycetemcomitans) aumenta all'aumentare del PPD. Tra le variabili studiate, PPD rappresenta il più importante fattore di rischio per la presenza di parodontopatogeni, mentre BOP è un indicatore di rischio per la ricerca del complesso rosso.
Resumo:
INTRODUCTION: Fixed orthodontic appliances can alter the subgingival microbiota. Our aim was to compare the subgingival microbiota and clinical parameters in adolescent subjects at sites of teeth treated with orthodontic bands with margins at (OBM) or below the gingival margin (OBSM), or with brackets (OBR). METHODS: Microbial samples were collected from 33 subjects (ages, 12-18 years) in treatment more than 6 months. The microbiota was assessed by the DNA-DNA checkerboard hybridization method. RESULTS: Bacterial samples were taken from 83 OBR,103 OBSM, and 54 OBM sites. Probing pocket depths differed by orthodontic type (P <0.001) with mean values of 2.9 mm (SD, 0.6) at OBSM sites, 2.5 mm (SD, 0.6) at OBM sites, and 2.3 mm (SD, 0.5) at OBR sites. Only Actinomyces israelii (P <0.001) and Actinomyces naeslundii (P <0.001) had higher levels at OBR sites, whereas Neisseria mucosa had higher levels at sites treated with OBSM or OBM (P <0.001). Aggregatibacter actinomycetemcomitans was found in 25% of sites independent of the appliance. CONCLUSIONS: Different types of orthodontic appliances cause minor differences in the subgingival microbiota (A israelii and A naeslundii) and higher levels at sites treated with orthodontic brackets. More sites with bleeding on probing and deeper pockets were found around orthodontic bands.
Resumo:
OBJECTIVES: To investigate the short-term effects of nonsurgical therapy (scaling and root planing, SRP) on the subgingival microbiota in chronic (CP) and aggressive (AP) periodontal disease. METHOD AND MATERIALS: Ninety-seven CP and AP subjects underwent full-mouth SRP on 2 consecutive days. AP patients were randomly assigned to either receive systemic metronidazole plus amoxicillin (AP+AB) or were treated mechanically alone (AP). Pathogens were identified with 16S rRNA oligodeoxynucleotide probes and dot-blot hybridization before and at days 2, 3, 4, 7, 10, and 21 of healing. CP subjects were treated by scaling and root planing along with placebo tablets. RESULTS: Initially, AP cell counts were 69.9- (Porphyromonas gingivalis), 10.2- (Aggregatibacter actinomycetemcomitans), 5.7- (Tannerella forsythia), and 3.3-fold (Prevotella intermedia) enhanced compared to CP cell counts. Following SRP, immediate elimination occurred in single individuals of all three treatment groups at day 2. After SRP plus antibiotic therapy (AP+AB), the prevalence scores dropped beyond the levels of AP and CP, beginning at day 7, and remained low until day 21 (P =or< .05). Clinical healing statistically benefited from SRP with no differences among the three treatment groups. CONCLUSION: Nonsurgical therapy resulted in both a suppression and early elimination of single taxa immediately after completion of active treatment. Systemic antibiotics significantly accelerate the suppression of the periodontal microflora, but have limited effect on the elimination of target isolates during healing.
Resumo:
BACKGROUND: Peri-implantitis is common in patients with dental implants. We performed a single-blinded longitudinal randomized study to assess the effects of mechanical debridement on the peri-implant microbiota in peri-implantitis lesions. MATERIALS AND METHODS: An expanded checkerboard DNA-DNA hybridization assay encompassing 79 different microorganisms was used to study bacterial counts before and during 6 months following mechanical treatment of peri-implantitis in 17 cases treated with curettes and 14 cases treated with an ultrasonic device. Statistics included non-parametric tests and GLM multivariate analysis with p<0001 indicating significance and 80% power. RESULTS: At selected implant test sites, the most prevalent bacteria were: Fusobacterium nucleatum sp., Staphylococci sp., Aggregatibacter actinomycetemcomitans, Helicobacter pylori, and Tannerella forsythia. 30 min. after treatment with curettes, A. actinomycetemcomitans (serotype a), Lactobacillus acidophilus, Streptococcus anginosus, and Veillonella parvula were found at lower counts (p<0.001). No such differences were found for implants treated with the ultrasonic device. Inconsistent changes occurred following the first week. No microbiological differences between baseline and 6-month samples were found for any species or between treatment study methods in peri-implantitis. CONCLUSIONS: Both methods failed to eliminate or reduce bacterial counts in peri-implantitis. No group differences were found in the ability to reduce the microbiota in peri-implantitis.
Resumo:
The impact of a semiquantitative commercially available test based on DNA-strip technology (microIDent®, Hain Lifescience, Nehren, Germany) on diagnosis and treatment of severe chronic periodontitis of 25 periodontitis patients was evaluated in comparison with a quantitative in-house real-time PCR. Subgingival plaque samples were collected at baseline as well as at 3, 6, and 12 months later. After extracting DNA, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and several other periodontopathogens were determined by both methods. The results obtained by DNA-strip technology were analyzed semiquantitatively and additionally quantitatively by densitometry. The results for the 4 major periodontopathogenic bacterial species correlated significantly between the 2 methods. Samples detecting a high bacterial load by one method and negative by the other were always found in less than 2% of the total samples. Both technologies showed the impact of treatment on microflora. Especially the semiquantitative DNA-strip technology clearly analyzed the different loads of periodontopathogens after therapy and is useful in microbial diagnostics for patients in dental practices.