304 resultados para Abund
Resumo:
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A reentry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r,synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.
Resumo:
Ocean Drilling Program Leg 103 recovered Lower Cretaceous sediments from the Galicia margin off the coast of Iberia. The high diversity and abundance of assemblages makes this excellent material for the study of Early Cretaceous calcareous nannofossils. With the exception of a hiatus between the upper Hauterivian and lower Barremian, nannofossil distributions form a continuous composite section from the lower Valanginian to lower Cenomanian sediments recovered at the four sites. The sedimentation history of this rifted continental margin is complex, and careful examination of the nannofossil content and lithology is necessary in order to obtain optimum biostratigraphic resolution. The Lower Cretaceous sequence consists of a lower Valanginian calpionellid marlstone overlain by terrigenous sandstone turbidites deposited in the Valanginian and Hauterivian during initial rifting of this part of the margin. Interbedded calcareous marl and claystone microturbidites overlie the sandstone turbidites. Rifting processes culminated in the late Aptian-early Albian, resulting in the deposition of a calcareous, clastic turbidite sequence. The subsequent deposition of dark carbonaceous claystones (black shales) represents the beginning of seafloor spreading, as the margin continued to subside to depths near or below the CCD. The diversity, abundance, and preservation of nannofossils within these varied lithologies differ, and an attempt to distinguish between near shore and open-marine assemblages is made. Genera used for this purpose include Nannoconus, Micrantholithus, Pickelhaube, and Lithraphidites. In this study, six new species and one new subspecies are described and documented. Ranges of other species are extended, and an attempt is made to clarify existing, yet poorly understood, taxonomic concepts. A technique in which a single specimen is viewed with both light and scanning electron microscopes was used extensively to aid in this task. In addition, further subdivisions of the Sissingh (1977) zonation are suggested in order to increase biostratigraphic resolution.
Resumo:
Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.
Resumo:
Most deep ocean carbon flux profiles show low and almost constant fluxes of particulate organic carbon (POC) in the deep ocean. However, the reason for the non-changing POC fluxes at depths is unknown. This study presents direct measurements of formation, degradation, and sinking velocity of diatom aggregates from laboratory studies performed at 15 °C and 4 °C during a three-week experiment. The average carbon-specific respiration rate during the experiment was 0.12 ± 0.03 at 15 °C, and decreased 3.5-fold when the temperature was lowered to 4 °C. No direct influence of temperature on aggregate sinking speed was observed. Using the remineralisation rate measured at 4 °C and an average particle sinking speed of 150 m d**-1, calculated carbon fluxes were similar to those collected in deep ocean sediment traps from a global data set, indicating that temperature plays a major role for deep ocean fluxes of POC.
Resumo:
Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.
Resumo:
Three Pleistocene, five Pliocene, and thirteen late and middle Miocene calcareous nannofossil datums have been identified in the Leg 170 cored sequences collected from a transect across the Middle America Trench off the Nicoya Peninsula. Although some nannofossil zones could not be delineated, particularly in the Pliocene and upper Miocene, there appears to be a complete or very nearly complete Pleistocene through lower Miocene section at Sites 1039 and 1040. The oldest assemblages, observed at Site 1039 and 1040, are latest early Miocene in age (nannofossil Zone NN4). These assemblages are associated with gabbro intrusions into the basal sediments (one contact metamorphic hornfels sample contains relict nannofossils), indicating an age for the intrusion event of between 15.6 and 18.2 Ma at both Sites 1039 and 1040. Reference Site 1039, located on the Cocos plate, provides the best-preserved sequence of sediments of late Pleistocene to latest early Miocene age. The sediments cored in the prism sections at Sites 1040, 1041, 1042, and 1043 all indicate that the age of nannofossil assemblages in the prism sediments, including the toe, wedge, and apron, are all Pleistocene with a considerable amount of upper Miocene reworking. A period of low sediment accumulation rates (~5.3 m/m.y.) is recorded for Pliocene and upper Miocene sediments at Sites 1039, 1040, and 1043. Pliocene calcareous nannofossil assemblages characteristic of the ~2.5- to 3.75-m.y. time interval (nannofossil Zones NN16 and equivalent nannofossil Subzones CN12b and CN12a) were not resolved at any site. Nannofossil Zones NN15, NN14, NN13, and NN12 (early late Pliocene to early Pliocene) could not be resolved at any site either because of the absence of marker species. Within the Miocene at Sites 1039 and 1040, nannofossil Zones NN10-NN6 were difficult to differentiate because of the absence of several species that define the zonal boundaries. These intervals, where the nannofossil zones have not been resolved or are partially resolved, are primarily composed of carbonate ooze deposited during an ~8.5-m.y. (2.5-11 Ma) low sediment accumulation rate time interval. The absence of many of the marker species is attributed to warmer water conditions during those periods. Many of the same marker species are absent in the sediments recovered from nearby Deep Sea Drilling Project Site 155 in the Panama Basin.
Resumo:
Lower Miocene basaltic glass spherules from DSDP Site 32 pelagic sediments in the eastern Pacific are compositionally diverse, and new analyses and interpretations have been added to those of earlier workers. The spherules are of titanian ferrobasalt which is compositionally similar to highly evolved abyssal basalts and to some oceanic island eruptives, and they were most likely shaped during intense lava fountaining during a number of separate eruptions. These eruptions tapped distinct but related magma batches in terms, for example, of distinctively high TiO2 and FeO* contents. Their age overlaps that of some of the eruptions of the Columbia River Plateau Basalts, but they are compositionally distinct from most of the latter basalts. Although about 15 m.y. old, they show little alteration. The low chlorine and sulfur contents compared to those of abyssal ferrobasalts are consistent with degassing prior to quenching during subaerial eruptions, and rule out production of the spherules by submarine fountaining. Lava fountaining alone is insufficient to account for the distance of about 100 km from even the closest possible seamount source. Instead, large phreatomagmatic eruption columns reaching at least 15 km and including lava fountaining immediately after the initial explosion are required. Alternatively, and deemed less likely, is their deposition by turbidites derived from Pioneer Seamount.
Resumo:
During Ocean Drilling Program (ODP) Leg 189, five sites were drilled in the Tasmanian Seaway with the objective to constrain the paleoceanographic implications of the separation of Australia from Antarctica and to elucidate the paleoceanographic developments throughout the Neogene (Shipboard Scientific Party, 2001a, doi:10.2973/odp.proc.ir.189.101.2001). Sediments ranged from Cretaceous to Quaternary in age and provided the opportunity to describe the paleoenvironments in the Tasman Seaway prior to, during, and after the separation of Australia and Antarctica. This study will focus on postseparation distribution of calcareous nannofossils through the Miocene. Miocene sediments were recovered at all five Leg 189 sites, and four of these sites were studied in detail to determine the calcareous nannofossil biostratigraphy. Hole 1168A, located on the western Tasmanian margin, contains a fairly continuous Miocene record and could be easily zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. Analysis of sediments from Hole 1169A, located on the western South Tasman Rise, was not included in this study, as the recovered sediments were highly disturbed and unsuitable for further analysis (Shipboard Scientific Party, 2001c, doi:10.2973/odp.proc.ir.189.104.2001). Holes 1170A, 1171A, and 1171C are located on the South Tasman Rise south of the modern Subtropical Front (STF). They revealed incomplete Miocene sequences intersected by an early Miocene and late Miocene hiatus and could only be roughly zoned using the Okada and Bukry zonation. Similarly, Hole 1172A, located on the East Tasman Plateau, contains a Miocene sequence with a hiatus in the early Miocene and in the late Miocene and could only be roughly zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. This study aims to improve calcareous nannofossil biostratigraphic resolution in this sector of the mid to high southern latitudes. This paper will present abundance, preservation, and stratigraphic distribution of calcareous nannofossils through the Miocene and focus mainly on biozonal assignment.
Resumo:
Site 1256 of Ocean Drilling Program Leg 206 to the Guatemala Basin on the eastern flank of the East Pacific Rise yielded a near-complete, middle Miocene-Quaternary carbonate-rich section that provides an opportunity to study low-latitude biostratigraphic and paleoceanographic events. The sedimentary sequence in Hole 1256B has been zoned using calcareous nannofossils according to the biostratigraphic schemes by Martini of 1971 (modified by Martini and Müller in 1986) and Okada and Bukry of 1980. The nannofossil assemblage is characteristic of the low latitudes, with abundant Gephyrocapsa, Discoaster, and Sphenolithus, and is in general moderately to well preserved, depending on nannofossil abundance and the presence of diatoms. Age estimates for the first occurrence and last occurrence of Reticulofenestra rotaria were derived from biostratigraphy and magnetostratigraphy independently and assigned to 7.18 and 6.32 Ma, respectively. Linear sedimentation rates, calculated using 28 nannofossil datums and age estimates, are high in the middle Miocene, decrease from the late Miocene to the Pliocene, then increase upsection. The abrupt drop in carbonate mass accumulation rates during the early late Miocene is referred to as the "carbonate crash." This pattern reflects (1) the long-trend decrease of productivity as the site moves away from the upwelling system at the equatorial divergence as well as (2) fluctuation in the chemistry of the bottom waters associated with production of the North Atlantic Bottom Water and ventilation via the Panama Gateway. A basement age of 14.5 Ma was obtained by extrapolating the 39.1-m/m.y. rate in the middle Miocene to the basement at 250.7 meters below seafloor, and is consistent with the ~15-Ma age of the oceanic crust estimated from marine magnetic anomalies. Reworked nannofossils and lithologic changes were used to unravel postdepositional history, and three episodes were recognized, one of which in the latest Miocene can be widely correlated.
Resumo:
Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.
Resumo:
The major objectives of Leg 133 were (1) to define the evolution of the carbonate platforms on the northeastern Australian margin, including their relationship to adjoining basins; and (2) to understand the effects of climate and sea level on their development in space and time (Davies, McKenzie, Palmer-Julson, et al., 1991, doi:10.2973/odp.proc.ir.133.1991). Sixteen sites were drilled, and more than 5.5 km of Neogene core was recovered during Leg 133. However, recovery of Paleogene sediments was unexpectedly poor (a total of a few meters), and the sediments were poorly dated because of strong diagenesis. On the other hand, Site 210 drilled in this region during Leg 21 yielded an expanded Paleogene section, which contains abundant calcareous microfossils. Biostratigraphic information for this section given in Burns, Andrews, et al. (1973, doi:10.2973/dsdp.proc.21.1973) was based primarily on shipboard results. Detailed calcareous nannofossil and planktonic foraminifer biostratigraphies have not been published. Here we provide a detailed documentation of the calcareous nannofossil distribution in the section, biostratigraphically date the section using the modern nannofossil zonation of Okada and Bukry (1980. doi:10.1016/0377-8398(80)90016-X), and construct an age-depth curve based on current knowledge of nannofossil magnetobiochronology. This should provide a useful Paleogene biostratigraphic reference in the northeastern Australian sea, as Site 210 has apparently yielded the most complete Paleogene record in the region. The detailed biostratigraphy should provide a better age constraint for the regional Eocene-Oligocene hiatus recognized previously (e.g., Jenkins and Srinivasan, 1986, doi:10.2973/dsdp.proc.90.113.1986) and should be useful for future studies on various aspects of Paleogene history of the northeastern Australian sea.
Resumo:
During Ocean Drilling Program Leg 188 to Prydz Bay, East Antarctica, several of the shipboard scientists formed the High-Resolution Integrated Stratigraphy Committee (HiRISC). The committee was established in order to furnish an integrated data set from the Pliocene portion of Site 1165 as a contribution to the ongoing debate about Pliocene climate and climate evolution in Antarctica. The proxies determined in our various laboratories were the following: magnetostratigraphy and magnetic properties, grain-size distributions (granulometry), near-ultraviolet, visible, and near-infrared spectrophotometry, calcium carbonate content, characteristics of foraminifer, diatom, and radiolarian content, clay mineral composition, and stable isotopes. In addition to the HiRISC samples, other data sets contained in this report are subsets of much larger data sets. We included these subsets in order to provide the reader with a convenient integrated data set of Pliocene-Pleistocene strata from the East Antarctic continental margin. The data are presented in the form of 14 graphs (in addition to the site map). Text and figure captions guide the reader to the original data sets. Some preliminary interpretations are given at the end of the manuscript.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
Ocean Drilling Program Hole 803D (Leg 130) from the western tropical Pacific (Ontong Java Plateau) and Hole 628A (Leg 101) from the western subtropical North Atlantic (Little Bahama Bank) contain rich assemblages of planktonic foraminifers. The uppermost Eocene-basal Miocene section of Hole 803D is apparently complete, whereas the Oligocene section of Hole 628A contains three unconformities based on planktonic foraminiferal evidence. Anomalous ranges are recorded for Chiloguembelina cubensis and Globigerinoides primordius. C. cubensis is found to range throughout the upper Oligocene of both sites, and G. primordius first occurs near the base of upper Oligocene Zone P22 in Hole 628A. Paleomagnetic stratigraphy provides constraints on the last occurrence (LO) of Subbotina angiporoides, the first occurrence (FO) of Globigerina angulisuturalis, the FO of Globigerinoides primordius, the FO of Paragloborotalia pseudokugleri, and the LO of Chiloguembelina cubensis. In general, taxon ranges, total diversity, and the composition of the planktonic foraminiferal assemblages from Holes 628A and 803D are similar. Differences in the composition of planktonic foraminiferal assemblages between the two sites are interpreted to be primarily the result of enhanced dissolution at Site 803 (e.g., paucity of Globigerina angulisuturalis and absence of G. ciperoensis). However, the greater abundances of Subbotina angiporoides in subtropical Hole 628A and Paragloborotalia opima in tropical Hole 803D are probably related to oceanographic differences between the two low-latitude sites. Comparison between the low and southern high latitudes illustrates some similarities in the composition of Oligocene planktonic foraminiferal assemblages as well as some important differences. Species such as Pseudohastigerina spp., Turborotalia increbescens, "Turborotalia" ampliapertura, Paragloborotalia opima, P. pseudokugleri, P. semivera/mayeri, Globigerinella obesa, Globigerina angulisuturalis, G. gortanii, G. ouachitaensis, G. sellii, G. tapuriensis, G. tripartita, G. pseudovenezuelana, Subbotina? eocaena and S.? yeguaensis are absent or have rare occurrences in the subantarctic Oligocene assemblages. Biogeographic gradients, although not as pronounced as during the late Neogene, were nonetheless significant during the Oligocene.
Resumo:
Two sites in the Labrador Sea and one site in Baffin Bay were drilled during Leg 105. Radiolarians were recovered at all three sites, although at Site 645 (Baffin Bay), radiolarians were present in useful numbers only in the mudline sample. Radiolarians of late Neogene age were recovered at Site 646 south of Greenland, while early Oligocene and early Miocene radiolarians were recovered from the Labrador Sea at Site 647. In Site 646, radiolarian and other coarse-fraction abundances vary dramatically from sample to sample and may reflect deep-water depositional processes as well as changes in surface-water conditions. Site 647 siliceous microfossils reach their peak abundance and preservation in Core 105-647A-25R and decline gradually upward into the lower Miocene (Cores 105-647A-13R and -14R). Siliceous microfossil abundances in counts of the > 38-µm Carbonate-free coarse fraction from the siliceous interval are correlated to each other, but not to the abundance of nonbiogenic coarse-fraction components. Radiolarian abundances in specimens per gram (but not diatom abundances) are correlated to bulk opal concentration and to the organic carbon content of the sediment. The abundance of radiolarians and other siliceous microfossils within the lower Oligocene to lower Miocene is interpreted as reflecting changes in surface-water productivity. With only a few exceptions, no stratigraphic indicator species were seen in samples from either Site 646 or Site 647. The absence of both tropical/subtropical and Norwegian-Greenland Sea stratigraphic forms is due to the dominance of subarctic North Atlantic taxa in Leg 105 assemblages. The early Oligocene and early Miocene assemblages recovered at Site 647 are of particular interest, as very little material of these ages has previously been recovered from the subarctic North Atlantic region, and virtually no descriptive work has been conducted on the more endemic components of the radiolarian assemblages from these time intervals. Thus, this report concentrates on providing, at least in part, the first comprehensive documentation of early Oligocene and early Miocene radiolarians from the subarctic North Atlantic, with emphasis on basic descriptions, measurements, and photographic documentation. However, synonymic work and formal designation of new species names has been deferred until additional material from other regions can be examined. The sole exception is the emendation of Theocalyptra tetracantha Bjorklund and Kellogg 1972 to Cycladophora tetracantha n. comb.