994 resultados para Absorption spectrum


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the transition dipole moment function (TDMF) on the dynamics Of O-3 photodissociation in the Hartley band have been exploited by means of exact 3D time-dependent wavepacket method using the SW potential energy surface [J. Chem. Phys. 78 (1983) 7191]. The calculations show that the explicit inclusion of the TDMF results in slight uniform reductions for the intensities of recurrence peaks of the autocorrelation function and a slight broadening of the absorption spectrum, in comparison with the result where the TDMF is assumed to be constant. The pattern of recurrence structures of the autocorrelation function is essentially unaffected. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为了掌握欧报春各花色遗传规律服务于良种生产,通过对欧报春各色花进行色素吸收光谱和薄层层析分析,进行不同花色杂交研究,分析了欧报春各色花所含色素类型及各花色遗传规律。结果显示欧报春群体含多种花色素,单株也可含有多种花色素,形成多变的粉色、红色及蓝色花。黄色深浅主要由类胡萝卜素含量决定。白色对粉色及黄色为隐性遗传,黄色、粉色为显性遗传并有数量遗传特征,黄色与粉色独立遗传。蓝色为多基因控制的隐性遗传,并具有数量遗传特征。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We fabricated organic photovoltaic cells by using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material and para-sexiphenyl (p-6P) as electron donor material. F16CuPc has wide absorption spectrum from 550 nm to 850 nm, which covers the maximum of solar photo flux. The measurement of their external quantum efficiency (EQE) demonstrated that the photocurrent comes from the excitons created in F16CuPc, which were separated into free electrons and holes at heterojunction interface of p-6P and F16CuPc. Moreover, F(16)FuPc with excellent air-stability improved the environmental stability of photovoltaic cells, and the unencapsulated cells exhibited the shelf lifetime of exceeding a week.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold nanoparticles with size 3-10 nm (diameter) were prepared by the reduction of HAuCl4 in a CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as the reducing agent. The as-formed gold nanoparticle colloid was characterized by UV/vis absorption spectrum and transmission electron microscopy(TEM). Various capping ligands, such as alkylthiols with different chain length and shape, trioctylphosphine (TOP), and pyridine are used to passivate the gold nanoparticles for the purpose of self-organization into superstructures. It is shown that the ligands have a great influence on the self-organization of gold nanoparticles into superlattices, and dodecanethiol C12H25SH is confirmed to be the best ligand for the self-organization. Self-organization of C12H25SH-capped gold nanoparticles into 1D, 2D and 3D superlattices has been observed on the carbon-coated copper grid by TEM without using any selective precipitation process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The L-a. a, oxidase of Agkistrodon blomhof fii ussurensis of Changbai Mountains in northeast of China has been separated by using ion-exchange and gel filtration techniques, This enzyme is composed of two subunits, the molecular weight of one subunit is about 36 000, the another is about 57 000, determined by sodium dodecyl sulfate-polyacryamide gel electrophoresis and matrix assisted laser desorption ion/time of flight mass spectrometry, The activity of L-a, a. oxidase determined using L-Leu as substrate. The optimal pH of the enzyme is 4. 5 similar to 5. 5 and 8 similar to 9. The UV-Visible absorption spectrum of L-a, a. oxidase shows the characteristics of flavor-proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dysprosium and ytterbium monophosphides have been prepared by the solid state reaction. The optical and electrical properties have been studied. Evidence that DyP and YbP are semiconductors has been obtained from the study of the absorption spectrum, the negative temperature coefficient of resistance and the rectifying effect. Their energy gaps are determined as 1.15 eV for DyP and 1.30 eV for YbP, electric conduction type is n-type, resistivities are about 10(-2) ohm cm and Hall mobility is 8.5-80 cm2/Vs. The p-n junction is formed on the LnP/Si.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phycoerythrins have been widely used in food, cosmetics., immunodiagnostics and analytical reagents. An efficient one-step chromatography method for purification of R-phycoerythrins from Polysiphonia urceolata was described in this paper. Pure R-phycoerythrin was obtained with an absorbance ratio A(565)/A(280) of 5.6 and a high recovery yield of 67-33%, using a DEAE-Sepharose Fast Flow chromatography with a gradient elution of pH, alternative to common gradient elution of ionic strength. The absorption spectrum of R-phycoerythrin was characterized with three absorbance maxima at 565, 539 and 498 mum, respectively and the fluorescence emission spectrum at room temperature was measured to be 580nm. The results of native-PAGE. and SDS-PAGE showed no contamination by other proteins in the phycoerythrin solution. which suggests an efficient method for the separation and purification of R-phycoerythrins from Polysiphonia urceolata. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main chlorophyll a/b light-harvesting complex (LHC 11) has been isolated directly from thylakoid membranes of marine green alga (Bryopsis corticulans Setch.) by two consecutive runs of anion exchange and gel-filtration chromatography. LHC 11 proteins in the membrane extracts treated with 3% n-Octyl-b-D-glucopyranoside (OG) obtained specific binding ability on Q Sepharose column, and thus were isolated from the thylakoid membranes in a highly selective fraction. The monomeric, trimeric and oligomeric subcomplexes of LHC 11 have been obtained by fractionation of the LHC 11 mixes with sucrose density gradient ultracentrifugation. The SDS-PAGE analysis of peptide composition and absorption spectrum showed that LHC 11 monomers, trimers and oligomers prepared through this work were intact and in high purity. Our report is the first to show that it is possible to purify LHC If directly from thylakoid membranes without extensively biochemical purification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B-phycoerythrin (BPE) and R-phycocyanin (RPC) were purified from Porphyridium cruentum by Sephadex G-200 chromatography, then the BPE was attached covalently to the RPC by reacting their amino groups to form the artificially covalent BPE-RPC conjugate in which the excitation energy can transfer from the BPE to the RPC with low efficiency. Meanwhile, the intact phycobilisome (PBS) consisting of BPE, RPC, APC and L-CM was isolated and purified from Porphyridium cruentum, and the purified PBS was found to keep intact if the solution contains sucrose. Comparison of spectroscopic properties between the purified PBS and the BPE-RPC conjugate suggests that the BPE-RPC conjugate is much more stable than the purified PBS. The construction of BPE-RPC conjugate with low efficiency of the excitation energy transfer may be useful for preparing phycobiliprotein probes. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phosphorescence excitation spectra of two thiones, 4-H-1-xanthione (XT) and 4-H-1-pyrane-4-thione (PT), cooled in a supersonic jet were investigated. The vibronic lineshape of the T1z origin of PT measured by cavity ring-down spectroscopy is considered and the excited state rotational constants are calculated. For XT the 3A2(nπ* ) → X1A1 phosphorescence excitation spectrum was investigated in the region 14900-17600 cm-1. The structure observed is shown to be due to the T1← S0 absorption and an assignment in terms of the vibronic structure of the band is proposed. A previous assignment of the S1 ← S0 origin is considered and the transition involved is shown to be most probably due to the absorption of a vibronic tiplet state T1z,v7. An alternative but tentative assignment of the S1,0 ←S0,0 transition is suggested. In the case of PT the phosphorescence excitation spectrum was investigated in the region of the 1A2(ππ*) ← X1A1 absorption band between 27300 and 28800 cm-1. The spectrum exhibits complex features which are typical for the strong vibronic coupling case of two adjacent electronic states. The observed intermediate level structure was attributed to the coupling with a lower lying dark electronic state 1B1(nπ*2), whose origin was estimated to be ~ 825 - 1025 cm-1 below the origin of 1A2(ππ*)0. Consequences of the vibronic coupling on the decay dynamics of 1A2(ππ*) as well as tentative assignments of vibronic transitions 1A2(ππ*)v ← X1A1 are also discussed. In the T1z ← S0 cavity ring-down absorption spectrum of PT, the vibronic lineshape of the T1z origin is analysed. As the T1z line is separated from the T1x,1y lines by a large zero-field splitting it is possible to use an Asyrot-like program to calculate the vibrational-rotational parameters determining the lineshape. It is shown that PT is non-planar in the first excited triplet state and the lineshape is composed of a mixture of A-type and C-type bandshapes. The non-planarity of PT is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.