933 resultados para Abscesso cerebral
Resumo:
Decreased cerebral blood flow causes cognitive impairments and neuronal injury in vascular dementia. In the present study, we reported that donepezil, a cholinesterase inhibitor, improved transient global cerebral ischemia-induced spatial memory impairment in gerbils. Treatment with 5mg/kg of donepezil for 21 consecutive days following a 10-min period of ischemia significantly inhibited delayed neuronal death in the hippocampal CA1 region. In Morris water maze test, memory impairment was significantly improved by donepezil treatment. Western blot analysis showed that donepezil treatment prevented reductions in p-CaMKII and p-CREB protein levels in the hippocampus. These results suggest that donepezil attenuates the memory deficit induced by transient global cerebral ischemia and this neuroprotection may be associated with the phosphorylation of CaMKII and CERB in the hippocampus.
Resumo:
Objective:
To evaluate how participation of children with cerebral palsy (CP) varied with their environment.
Design:
Home visits to children. Administration of Assessment of Life Habits and European Child Environment Questionnaires. Structural equation modeling of putative associations between specific domains of participation and environment, while allowing for severity of child's impairments and pain.
Setting:
European regions with population-based registries of children with CP.
Participants:
Children (n=1174) aged 8 to 12 years were randomly selected from 8 population-based registries of children with CP in 6 European countries. Of these, 743 (63%) agreed to participate; 1 further region recruited 75 children from multiple sources. Thus, there were 818 children in the study.
Interventions:
Not applicable.
Main Outcome Measure:
Participation in life situations.
Results:
For the hypothesized associations, the models confirmed that higher participation was associated with better availability of environmental items. Higher participation in daily activities—mealtimes, health hygiene, personal care, and home life—was significantly associated with a better physical environment at home (P<.01). Mobility was associated with transport and physical environment in the community. Participation in social roles (responsibilities, relationships, recreation) was associated with attitudes of classmates and social support at home. School participation was associated with attitudes of teachers and therapists. Environment explained between 14% and 52% of the variation in participation.
Conclusions:
The findings confirmed the social model of disability. The physical, social, and attitudinal environment of disabled children influences their participation in everyday activities and social roles.
Resumo:
Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P <0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.
Resumo:
Decompressive hemicraniectomy has been used increasingly in recent years to treat malignant middle cerebral artery territory infarction. This review examines functional outcome data, with the novel analysis of outcomes according to temporal periods post-surgery. Case series data were pooled to determine significant correlates of outcome. Severe disability was frequently the outcome among survivors within one month post-surgery. Time and rehabilitation were later reflected, with fewer deaths and the emergence of mild to moderate disability increasing in prevalence. Mortality and severe disability were consistently more probable with increasing age. Presurgical clinical status in the form of additional cerebral artery involvement and midline shift also correlated with mortality within the 30-day period post-stroke.
Resumo:
Purpose: This study examines long-term neuropsychological and psychosocial outcomes of survivors of malignant middle cerebral artery infarction treated via decompressive hemicraniectomy. Method: A case series design facilitated a detailed analysis of the outcomes among five participants. Neuropsychological domains assessed included premorbid and current IQ, sustained, selective and divided attention, visual and auditory memory, executive functioning and visuo-spatial ability. Psychosocial domains assessed included self-rated depression, anxiety and quality of life. Participants and their main carer were asked about their retrospective view of surgery. Results: All participants showed neuropsychological impairments in multiple cognitive domains, with preserved ability in others. Effects of laterality of brain function were evident in some domains. Clinically significant depression was evident in two participants. Overall quality of life was within average limits in three of four assessed participants. Four participants retrospectively considered surgery as having been a favourable course of action. Conclusion: While neuropsychological impairments are highly likely post-surgery, preserved abilities and social support may serve a protective function against depression and an unacceptably poor quality of life. Results do not support the suggestion that decompressive hemicraniectomy following malignant middle cerebral artery infarction necessarily leads to unacceptable neuropsychological or psychosocial outcomes.
Resumo:
Purpose: This study explores the experiences and sense of burden of family carers of survivors of malignant middle cerebral artery infarctions who had undergone decompressive hemicraniectomy. To date, there have been no studies examining carer outcomes among this unique population. This study, taken alongside an already published study of survivor outcomes, provides a more holistic picture with regard to sequelae within the sample. Method: Six family carers completed the Sense of Competence Questionnaire and the Hospital Anxiety and Depression Scale. These results were compared with existing normative data. Carers also consented to a semi-structured interview. Interview data were examined using thematic content analysis. Consistent with the mixed methods design, quantitative and qualitative findings were integrated for further analysis. Results: While carers experienced many losses, their overall sense of burden was not outside 'Average' limits, nor did they experience clinically significant symptoms of depression. All carers identified methods of coping with the demands of caregiving. These included intrapersonal, interpersonal and practical strategies. All carers apart from one were able to identify areas of post-traumatic growth. Conclusion: Carers will benefit from information, support and care. In addition, problem solving skills are essential in managing the myriad difficulties that arise in the aftermath of stroke. [Box: see text].
Resumo:
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Resumo:
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.
Resumo:
BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.
METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.
CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
Resumo:
We report a case study of a female who received an allogeneic bone marrow transplantation (BMT) from a sex-mismatched related donor and who, after a twenty-year interval, developed an acute fulminant biopsy-proven demyelinating disorder of cerebral white matter which followed a remitting-relapsing chronic course. In situ hybridization studies using Y-chromosome-specific markers revealed Y-chromosome-positive mononuclear cells in biopsy samples of white matter. Magnetic resonance imaging (MRI) studies of the asymptomatic healthy male donor showed multiple white matter lesions. These observations suggest that donor lymphocytes were sensitized to central nervous system (CNS) antigens prior to or at the time of transplantation but remained dormant for 20 years before becoming activated to cause widespread demyelination.
Resumo:
The ease with which we avoid falling down belies a highly sophisticated and distributed neural network for controlling reactions to maintain upright balance. Although historically these reactions were considered within the sub cortical domain, mounting evidence reveals a distributed network for postural control including a potentially important role for the cerebral cortex. Support for this cortical role comes from direct measurement associated with moments of induced instability as well as indirect links between cognitive task performance and balance recovery. The cerebral cortex appears to be directly involved in the control of rapid balance reactions but also setting the central nervous system in advance to optimize balance recovery reactions even when a future threat to stability is unexpected. In this review the growing body of evidence that now firmly supports a cortical role in the postural responses to externally induced perturbations is presented. Moreover, an updated framework is advanced to help understand how cortical contributions may influence our resistance to falls and on what timescale. The implications for future studies into the neural control of balance are discussed.