967 resultados para ATOMIC-FORCE MICROSCOPE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have applied in situ atomic force microscopy to directly observe the aggregation of Alzheimer’s β-amyloid peptide (Aβ) in contact with two model solid surfaces: hydrophilic mica and hydrophobic graphite. The time course of aggregation was followed by continuous imaging of surfaces remaining in contact with 10–500 μM solutions of Aβ in PBS (pH 7.4). Visualization of fragile nanoscale aggregates of Aβ was made possible by the application of a tapping mode of imaging, which minimizes the lateral forces between the probe tip and the sample. The size and the shape of Aβ aggregates, as well as the kinetics of their formation, exhibited pronounced dependence on the physicochemical nature of the surface. On hydrophilic mica, Aβ formed particulate, pseudomicellar aggregates, which at higher Aβ concentration had the tendency to form linear assemblies, reminiscent of protofibrillar species described recently in the literature. In contrast, on hydrophobic graphite Aβ formed uniform, elongated sheets. The dimensions of those sheets were consistent with the dimensions of β-sheets with extended peptide chains perpendicular to the long axis of the aggregate. The sheets of Aβ were oriented along three directions at 120° to each other, resembling the crystallographic symmetry of a graphite surface. Such substrate-templated self-assembly may be the distinguishing feature of β-sheets in comparison with α-helices. These studies show that in situ atomic force microscopy enables direct assessment of amyloid aggregation in physiological fluids and suggest that Aβ fibril formation may be driven by interactions at the interface of aqueous solutions and hydrophobic substrates, as occurs in membranes and lipoprotein particles in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast centromeric DNA (CEN DNA) binding factor 3 (CBF3) is a multisubunit protein complex that binds to the essential CDEIII element in CEN DNA. The four CBF3 proteins are required for accurate chromosome segregation and are considered to be core components of the yeast kinetochore. We have examined the structure of the CBF3–CEN DNA complex by atomic force microscopy. Assembly of CBF3–CEN DNA complexes was performed by combining purified CBF3 proteins with a DNA fragment that includes the CEN region from yeast chromosome III. Atomic force microscopy images showed DNA molecules with attached globular bodies. The contour length of the DNA containing the complex is ≈9% shorter than the DNA alone, suggesting some winding of DNA within the complex. The measured location of the single binding site indicates that the complex is located asymmetrically to the right of CDEIII extending away from CDEI and CDEII, which is consistent with previous data. The CEN DNA is bent ≈55° at the site of complex formation. A significant fraction of the complexes are linked in pairs, showing three to four DNA arms, with molecular volumes approximately three times the mean volumes of two-armed complexes. These multi-armed complexes indicate that CBF3 can bind two DNA molecules together in vitro and, thus, may be involved in holding together chromatid pairs during mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm−1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s−1 under zero force up to 15 s−1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined high-resolution atomic force microscopy (AFM) imaging and force spectroscopy to gain insight into the interaction forces between the individual protomers of the hexagonally packed intermediate (HPI) layer of Deinococcus radiodurans. After imaging the HPI layer, the AFM stylus was attached to individual protomers by enforced stylus-sample contact to allow force spectroscopy experiments. Imaging of the HPI layer after recording force-extension curves allowed adhesion forces to be correlated with structural alterations. By using this approach, individual protomers of the HPI layer were found to be removed at pulling forces of ≈300 pN. Furthermore, it was possible to sequentially unzip entire bacterial pores formed by six HPI protomers. The combination of high-resolution AFM imaging of individual proteins with the determination of their intramolecular forces is a method of studying the mechanical stability of supramolecular structures at the level of single molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregation of Ig light chains to form amyloid fibrils is a characteristic feature of light-chain amyloidosis, a light-chain deposition disease. A recombinant variable domain of the light chain SMA was used to form amyloid fibrils in vitro. Fibril formation was monitored by atomic force microscopy imaging. Single filaments 2.4 nm in diameter were predominant at early times; protofibrils 4.0 nm in diameter were predominant at intermediate times; type I and type II fibrils 8.0 nm and 6.0 nm in diameter, respectively, were predominant at the endpoints. The increase in number of fibrils correlated with increased binding of the fluorescent dye thioflavin T. The fibrils and protofibrils showed a braided structure, suggesting that their formation involves the winding of protofibrils and filaments, respectively. These observations support a model in which two filaments combine to form a protofibril, two protofibrils intertwine to form a type I fibril, and three filaments form a type II fibril.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the study of the dynamics of the unbinding process under a force load f of adsorbed proteins (fibrinogen) on a solid surface (hydrophilic silica) by means of atomic force microscopy spectroscopy. By varying the loading rate rf, defined by f = rf t, t being the time, we find that, as for specific interactions, the mean rupture force increases with rf. This unbinding process is analyzed in the framework of the widely used Bell model. The typical dissociation rate at zero force entering in the model lies between 0.02 and 0.6 s−1. Each measured rupture is characterized by a force f0, which appears to be quantized in integer multiples of 180–200 pN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scanning force microscope was converted to an electrostatic force microscope by charging the usually neutral cantilever with phospholipids. The electrostatic force microscope was used to study surface electrostatic charges of samples in aqueous solutions. Lysozymes, DEAE-Sephadex beads, 3-propyltriethoxysilane-treated glass and mica were imaged in water or phosphate buffer with electrostatic force microscopy. The adhesion force measured when a charged probe and oppositely charged specimen interacted was up to 500 times greater than when a bare probe was used. This dramatic increase in measured adhesion force can be attributed to the energy required to break the salt bridges formed between the charged probe and the specimen. The use of phospholipids to functionalize the cantilever tip allows the incorporation of other biomolecules and ligands that can be used as biologically specific tips (e.g., receptors, drugs) for the study of intermolecular interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.