992 resultados para ANONYMOUS NUCLEAR LOCI
Resumo:
We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10 -11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10 -9), ANK3 (rs10994359, P = 2.5 × 10 -8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10 -9).
Resumo:
Familial juvenile hyperuricaemic (gouty) nephropathy (FJHN), is an autosomal dominant disease associated with a reduced fractional excretion of urate, and progressive renal failure. FJHN is genetically heterogeneous and due to mutations of three genes: uromodulin (UMOD), renin (REN) and hepatocyte nuclear factor-1beta (HNF-1β) on chromosomes 16p12, 1q32.1, and 17q12, respectively. However, UMOD, REN or HNF-1β mutations are found in only ~45% of FJHN probands, indicating the involvement of other genetic loci in ~55% of probands. To identify other FJHN loci, we performed a single nucleotide polymorphism (SNP)-based genome-wide linkage analysis, in six FJHN families in whom UMOD, HNF-1β and REN mutations had been excluded. Parametric linkage analysis using a 'rare dominant' model established linkage in five of the six FJHN families, with a LOD score >+3, at 0% recombination, between FJHN and SNPs at chromosome 2p22.1-p21. Analysis of individual recombinants in two unrelated affected individuals defined a ~5.5 Mbp interval, flanked telomerically by SNP RS372139 and centromerically by RS896986 that contained the locus, designated FJHN3. The interval contains 28 genes, and DNA sequence analysis of the most likely candidate, solute carrier family 8 member 1 (SLC8A1), did not identify any abnormalities in the FJHN3 probands. FJHN3 is likely located within a ~5.5 Mbp interval on chromosome 2p22.1-p21, and identifying the genetic abnormality will help to further elucidate mechanisms predisposing to gout and renal failure.
Resumo:
We aimed to identify novel genetic variants affecting asthma risk, since these might provide novel insights into molecular mechanisms underlying the disease. We did a genome-wide association study (GWAS) in 2669 physician-diagnosed asthmatics and 4528 controls from Australia. Seven loci were prioritised for replication after combining our results with those from the GABRIEL consortium (n=26 475), and these were tested in an additional 25 358 independent samples from four in-silico cohorts. Quantitative multi-marker scores of genetic load were constructed on the basis of results from the GABRIEL study and tested for association with asthma in our Australian GWAS dataset. Two loci were confirmed to associate with asthma risk in the replication cohorts and reached genome-wide significance in the combined analysis of all available studies (n=57 800): rs4129267 (OR 1·09, combined p= 2·4×10-8) in the interleukin-6 receptor (IL6R) gene and rs7130588 (OR 1·09, p=1·8×10-8) on chromosome 11q13.5 near the leucine-rich repeat containing 32 gene (LRRC32, also known as GARP). The 11q13.5 locus was significantly associated with atopic status among asthmatics (OR 1·33, p=7×10-4), suggesting that it is a risk factor for allergic but not non-allergic asthma. Multi-marker association results are consistent with a highly polygenic contribution to asthma risk, including loci with weak effects that might be shared with other immune-related diseases, such as NDFIP1, HLA-B, LPP, and BACH2. The IL6R association further supports the hypothesis that cytokine signalling dysregulation affects asthma risk, and raises the possibility that an IL6R antagonist (tocilizumab) may be effective to treat the disease, perhaps in a genotype-dependent manner. Results for the 11q13.5 locus suggest that it directly increases the risk of allergic sensitisation which, in turn, increases the risk of subsequent development of asthma. Larger or more functionally focused studies are needed to characterise the many loci with modest effects that remain to be identified for asthma. National Health and Medical Research Council of Australia. A full list of funding sources is provided in the webappendix. © 2011 Elsevier Ltd.
Resumo:
We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10-10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10-9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10-14, OR = 1.51, 95% CI 1.35-1.68; rs4977756 combined P = 1.35 × 10-14, OR = 1.39, 95% CI 1.28-1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma. © 2011 Nature America, Inc. All rights reserved.
Resumo:
To identify new susceptibility loci for psoriasis, we undertOk a genome-wide asociation study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified asociations at eight previously unreported genomic loci. Seven loci harbored genes with recognized iMune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These asociations were replicated in 9,079 European samples (six loci with a combined P < 5-10 -8 and two loci with a combined P < 5-10-7). We also report compeLing evidence for an interaction betwEn the HLA-C and ERAP1 loci (combined P = 6.95-10-6). ERAP1 plays an important role in MHC claS I peptide proceSing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk aLele. Our findings implicate pathways that integrate epidermal barrier dysfunction with iNate and adaptive iMune dysregulation in psoriasis pathogenesis.
Resumo:
To identify susceptibility loci for ankylosing spondylitis, we undertook a genome-wide association study in 2,053 unrelated ankylosing spondylitis cases among people of European descent and 5,140 ethnically matched controls, with replication in an independent cohort of 898 ankylosing spondylitis cases and 1,518 controls. Cases were genotyped with Illumina HumHap370 genotyping chips. In addition to strong association with the major histocompatibility complex (MHC; P 10 800), we found association with SNPs in two gene deserts at 2p15 (rs10865331; combined P = 1.9 × 10 19) and 21q22 (rs2242944; P = 8.3 × 10 20), as well as in the genes ANTXR2 (rs4333130; P = 9.3 × 10 8) and IL1R2 (rs2310173; P = 4.8 × 10 7). We also replicated previously reported associations at IL23R (rs11209026; P = 9.1 × 10 14) and ERAP1 (rs27434; P = 5.3 × 10 12). This study reports four genetic loci associated with ankylosing spondylitis risk and identifies a major role for the interleukin (IL)-23 and IL-1 cytokine pathways in disease susceptibility. © 2010 Nature America, Inc. All rights reserved.
Resumo:
Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
Resumo:
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N 71,225 European ancestry, N 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10 24), CYP1A2 (P = 1 × 10 23), FGF5 (P = 1 × 10 21), SH2B3 (P = 3 × 10 18), MTHFR (P = 2 × 10 13), c10orf107 (P = 1 × 10 9), ZNF652 (P = 5 × 10 9) and PLCD3 (P = 1 × 10 8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
Resumo:
PURPOSE The restricted genetic diversity and homogeneous molecular basis of Mendelian disorders in isolated founder populations have rarely been explored in epilepsy research. Our long-term goal is to explore the genetic basis of epilepsies in one such population, the Gypsies. The aim of this report is the clinical and genetic characterization of a Gypsy family with a partial epilepsy syndrome. METHODS Clinical information was collected using semistructured interviews with affected subjects and informants. At least one interictal electroencephalography (EEG) recording was performed for each patient and previous data obtained from records. Neuroimaging included structural magnetic resonance imaging (MRI). Linkage and haplotype analysis was performed using the Illumina IVb Linkage Panel, supplemented with highly informative microsatellites in linked regions and Affymetrix SNP 5.0 array data. RESULTS We observed an early-onset partial epilepsy syndrome with seizure semiology strongly suggestive of temporal lobe epilepsy (TLE), with mild intellectual deficit co-occurring in a large proportion of the patients. Psychiatric morbidity was common in the extended pedigree but did not cosegregate with epilepsy. Linkage analysis definitively excluded previously reported loci, and identified a novel locus on 5q31.3-q32 with an logarithm of the odds (LOD) score of 3 corresponding to the expected maximum in this family. DISCUSSION The syndrome can be classified as familial temporal lobe epilepsy (FTLE) or possibly a new syndrome with mild intellectual deficit. The linked 5q region does not contain any ion channel-encoding genes and is thus likely to contribute new knowledge about epilepsy pathogenesis. Identification of the mutation in this family and in additional patients will define the full phenotypic spectrum.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
Background Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. Methods We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS).We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived agespecific absolute risks of developing prostate cancer by PRS stratum and family history. Results The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). Conclusions Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. Impact:We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.
Resumo:
Document clustering is one of the prominent methods for mining important information from the vast amount of data available on the web. However, document clustering generally suffers from the curse of dimensionality. Providentially in high dimensional space, data points tend to be more concentrated in some areas of clusters. We take advantage of this phenomenon by introducing a novel concept of dynamic cluster representation named as loci. Clusters’ loci are efficiently calculated using documents’ ranking scores generated from a search engine. We propose a fast loci-based semi-supervised document clustering algorithm that uses clusters’ loci instead of conventional centroids for assigning documents to clusters. Empirical analysis on real-world datasets shows that the proposed method produces cluster solutions with promising quality and is substantially faster than several benchmarked centroid-based semi-supervised document clustering methods.
Resumo:
Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.
Resumo:
The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.