990 resultados para ALUMINO-SILICATE
Resumo:
Whitish and whitish-light brown milky-like textural pedofeatures and impregnations were found in the voids and the matrix of buried paleosols older than 2.7 million years in a site in Sardinia, Italy. The pedofeatures were described and analysed using micromorphology, X-ray diffraction and microprobe techniques, and their spatial distribution correlated with field evidence. The suite of analyses showed that the main components of the pedofeatures were more or less ordered silica phases. As well as forming a matrix cement, these pedofeatures also occurred as coatings and infillings in pores. Significant amounts of alumina and, less, Mg, Ca and Fe were also present in the pedofeatures, possibly in the form of silicate coatings and inclusions/impurities, or alumino-silicates of the adjacent soil matrix. A number of hypotheses are drawn on the possible mechanisms of formation of these silica-rich pedofeatures, including the possibility of prolonged weathering of volcanic materials and the resulting formation of colloids and more or less ordered silica phases, with successive dehydration and progressive ordering of phases during the at least 2.5 million years. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This contribution describes the optimization of chlorine extraction from silicate samples by pyrohydrolysis prior to the precise determination of Cl stable-isotope compositions (637 Cl) by gas source, dual inlet Isotope Ratio Mass Spectrometry (IRMS) on CH(3)Clg. The complete method was checked on three international reference materials for Cl-content and two laboratory glass standards. Whole procedure blanks are lower than 0. 5 mu mol, corresponding to less than 10 wt.% of most of the sample chloride analysed. In the absence of international chlorine isotope rock, we report here Cl extracted compared to accepted Cl contents and reproducibilities on Cl and delta Cl-37 measurements for the standard rocks. After extraction, the Cl contents of the three international references compared within error with the accepted values (mean yield = 94 +/-10%) with reproducibilities better than 12% (10). The laboratory glass standards - andesite SO100DS92 and phonolite S9(2) - were used specifically to test the effect of chloride amount on the measurements. They gave Cl extraction yields of 100 +/-6% (1 sigma-; n = 15) and 105 +/- 8% (1 sigma-; n = 7), respectively, with delta Cl-37 values of -0.51 0.14%o and -0.39 0.17%o (1g). In summary, for silicate samples with Cl contents between 39 and 9042 ppm, the Pyrohydrolysis/HPLC method leads to overall CI extraction yields of 100 8%, reproducibilities on Cl contents of 7% and on delta Cl-37 measurements of 0.12%o (all 1 sigma). The method was further applied to ten silicate rocks of various mineralogy and chemistry (meteorite, fresh MORB glasses, altered basalts and setpentinized peridotites) chosen for their large range of Cl contents (70-2156 ppm) and their geological significance. delta Cl-37 values range between -2.33 and -0.50%o. These strictly negative values contrast with the large range and mainly positive values previously reported for comparable silicate samples and shown here to be affected by analytical problems. Thus we propose a preliminary, revised terrestrial CI cycle, mainly dominated by negative and zero delta Cl-37 values. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Whitish and whitish-light brown milky-like textural pedofeatures and impregnations were found in the voids and the matrix of buried paleosols older than 2.7 million years in a site in Sardinia, Italy. The pedofeatures were described and analysed using micromorphology, X-ray diffraction and microprobe techniques, and their spatial distribution correlated with field evidence. The suite of analyses showed that the main components of the pedofeatures were more or less ordered silica phases. As well as forming a matrix cement, these pedofeatures also occurred as coatings and infillings in pores. Significant amounts of alumina and, less, Mg, Ca and Fe were also present in the pedofeatures, possibly in the form of silicate coatings and inclusions/impurities, or alumino-silicates of the adjacent soil matrix. A number of hypotheses are drawn on the possible mechanisms of formation of these silica-rich pedofeatures, including the possibility of prolonged weathering of volcanic materials and the resulting formation of colloids and more or less ordered silica phases, with successive dehydration and progressive ordering of phases during the at least 2.5 million years. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We present mid-infrared (mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC 3281, obtained with the Thermal-Region Camera Spectrograph at the Gemini-South telescope. The spectra present a very deep silicate absorption at 9.7 mu m, and [S IV] 10.5 mu m and [Ne II] 12.7 mu m ionic lines, but no evidence of polycyclic aromatic hydrocarbon emission. We find that the nuclear optical extinction is in the range 24 mag <= A(V) <= 83 mag. A temperature T = 300 K was found for the blackbody dust continuum component of the unresolved 65 pc nucleus and the region at 130 pc SE, while the region at 130 pc NW reveals a colder temperature (200 K). We describe the nuclear spectrum of NGC 3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC 3281 is R(0)/R(d) = 20, with 14 clouds in the equatorial radius with optical depth of tau(V) = 40 mag. We would be looking in the direction of the torus equatorial radius (i = 60 degrees), which has outer radius of R(0) similar to 11 pc. The column density is N(H) approximate to 1.2 x 10(24) cm(-2) and the iron K alpha equivalent width (approximate to 0.5-1.2 keV) is used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC 3281 as a Compton-thick source, may also be responsible for the absorption at 9.7 mu m providing strong evidence that the silicate dust responsible for this absorption can be located in the active galactic nucleus torus.
Resumo:
Sodium alumino-phosphate glasses co-doped with Yb(3+) and Tm(3+) ions have been prepared with notably low OH(-) content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb(3+) acts as an efficient sensitizer of excitation energy at 0.98 mu m - which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm(3+) ions ((2)F(5/2), (3)H(6) --> (2)F(7/2), (3)H(5)). Through this process, the emitting level (3)F(4) is rapidly populated, generating improved emission at 1.8 mu m ((3)F(4) --> (3)H(6)). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non- radiative transfer to OH(-) groups were evaluated, and minimized when possible. The dipole - dipole energy transfer microscopic parameters corresponding to Yb(3+) --> Tm(3+), Yb(3+) --> Yb(3+) and Tm(3+) --> Tm(3+) transfers, calculated by the Forster-Dexter model, are C(Yb-Tm) = 2.9 x 10(-40) cm(6) s(-1), C(Yb-Yb) = 42 x 10(-40) cm(6) s(-1) and C(Tm-Tm) = 43 x 10(-40) cm(6) s(-1), respectively.
Resumo:
Determinations of the volatile elements carbon, hydrogen, sulfur and nitrogen in many geological RM, performed with the LECO CHN and SC analysers, are presented. The method allowed the determination of S in concentrations from a few % m/m to 0.001% m/m or less, of C from % m/m to 0.01% m/m and of H from % m/m to 0.004% m/m. Accuracy was usually better than the XRF method (for S). All obtained values passed the Sutarno-Steger test, which establishes that vertical bar(mean(analysed) - mean(certified))vertical bar/ S(certified) < 2, for the cases with an appropriate number of determinations (n > 10 for each element). It was possible to perform routine determination of C, H and S with the instrumentation, coupled with the determination of major and minor elements in geological materials. Determination of nitrogen could also be performed on an exploratory basis, with improvements in the method dependent on the future availability of more reference materials with reliable composition of this element.
Resumo:
Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The mesoporous molecular sieves of MCM-41 and AlMCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work the molecular sieves MCM-41 and AlMCM-41 were synthesized by replacing the source of silica conventionally used, for quartz, an alternative and abundant, and the use of waste from the production of diatomaceous earth, an aluminum-silicate, as a source aluminum, due to abundant reserves of diatomaceous earth in the state of Rio Grande do Norte in the city of Ceará-Mirim, with the objective of producing high-value materials that have similar characteristics to traditional commercial catalysts in the market. These materials were synthesized by the method of hydrothermal synthesis at 100 º C for 7 days and subjected to calcination at 500 º C for 2 hours under flow of nitrogen and air. The molecular sieves were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and thermogravimetric analysis (TG), adsorption of N2 (BET and BJH methods), spectroscopy in the infra red (FTIR), microscopy scanning electron (SEM) and transmission electron microscopy (TEM). The analysis indicated that the synthesized materials showed characteristic hexagonal structure of mesopores materials with high specific surface area and sort and narrow distribution of size of pores
Resumo:
The bacterial spot in yellow passion fruit plants, caused by the bacteria Xanthomonas axonopodis pv. passiflorae, occurs in all producing areas of the country, and is responsible for great economic losses in the culture of passion fruit. This study aimed to test the efficiency of the silicate clay in the inhibition of the bacteria Xanthomonas axonopodis pv. passiflorae in vitro, and in both preventive and curative control of the bacterial spot in seedlings of yellow passion fruit plants. The silicate clay was added to the growth medium at concentrations of. 0.5, 1.0, 1.5 and 2.0%, placed in Petri dishes. After the culture medium was cooler, the bacterial suspension was inoculates (10(7) UFC.mL(-1)) with a handle, and left incubating at 28 degrees C for three days, and then the bacterial growth was evaluated. Subsequently, the product at the same concentrations above was sprayed on seedlings of 'Afruvec' passion fruit, as preventive or curative. The inoculation of the bacteria was made by foliar spraying of bacterial suspension (10(7) ufc.mL(-1)), 24 hours before or after the curative and preventive treatments, respectively. The severity of the disease was measured comparing each four true leaves from bottom up, with a diagrammatic scale. In the concentrations evaluated, the silicate clay inhibited both bacteria in vitro and symptoms of bacterial spot in the curative treatment. In preventive treatment, significant results were obtained using more than 1.0% of clay silicates. Based on these results, the clay silicate can be recommended, the concentration of 1.0-2.0% for the control of bacterial spot of passion fruit plants, in foliar sprays.
Resumo:
Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Direct-sampling and remote-sensing measurements were made at the crater rim of Masaya volcano (Nicaragua) to sample the aerosol plume emanating from the active vent. We report the first measurements of the size distribution of fine silicate particles (d <10 mu m) in Masaya's plume, by automated scanning electron microscopy (QEMSCAN) analysis of a particle filter. The particle size distribution was approximately lognormal with modal d similar to 1.15 mu m. The majority of these particles were found to be spherical. These particles are interpreted to be droplets of quenched magma produced by a spattering process. Compositional analyses confirm earlier reports that the fine silicate particles show a range of compositions between that of the degassing magma and nearly pure silica and that the extent of compositional variability decreases with increasing particle size. These results indicate that fine silicate particles are altered owing to reactions with acidic droplets in the plume. The emission flux of fine silicate particles was estimated as similar to 10(11) s(-1), equivalent to similar to 55 kg d(-1). Sun photometry, aerosol spectrometry, and thermal precipitation were used to determine the overall particle size distribution of the plume (0.01 < d(mu m) < 10). Sun photometry and aerosol spectrometry measurements indicate the presence of a large number of particles (assumed to be aqueous) with d similar to 1 mu m. Aerosol spectrometry measurements further show an increase in particle size as the nighttime approached. The emission flux of particles from Masaya was estimated as similar to 10(17) s(-1), equivalent to similar to 5.5 Mg d(-1) where d < 4 mu m.