920 resultados para ALLERGY
Resumo:
Recent findings from the clinic and the laboratory have transformed the way proteases and their inhibitors are perceived in the outermost layer of the skin, the epidermis. It now appears that an integrated proteolytic network operates within the epidermis, comprising more than 30 enzymes that carry out a growing list of essential functions. Equally, defective regulation or execution of protease-mediated processes is emerging as a key contributor to diverse human skin pathologies, and in recent years the number of diseases attributable to aberrant proteolytic activity has more than doubled. Here, we survey the different roles of proteases in epidermal homeostasis (from processing enzymes to signalling molecules) and explore the spectrum of rare and common human skin disorders where proteolytic pathways are dysregulated.
Resumo:
Background Patient-relevant outcome measures are essential for high-quality clinical research, and quality-of-life (QoL) tools are the current standard. Currently, there is no validated children's acute cough-specific QoL questionnaire. Objective The objective of this study was to develop and validate the Parent-proxy Children's Acute Cough-specific QoL Questionnaire (PAC-QoL). Methods Using focus groups, a 48-item PAC-QoL questionnaire was developed and later reduced to 16 items by using the clinical impact method. Parents of children with a current acute cough (<2 weeks) at enrollment completed 2 validated cough score measures, the preliminary 48-item PAC-QoL, and 3 other questionnaires (the State Trait Anxiety Inventory [STAI], the Short-Form 8-item 24-hour recall Health Survey [SF-8], and the Depression, Anxiety, and Stress 21-item Scale [DASS21]). All measures were repeated on days 3 and 14. Results The median age of the 155 children enrolled was 2.3 years (interquartile range, 1.3-4.6). Median cough duration at enrollment was 3 days (interquartile range, 2-5). The reduced 16-item scale had high internal consistency (Cronbach α = 0.95). Evidence for repeatability and criterion validity was shown by significant correlations between the domains and total PAC-QoL scores and the SF-8 (r = −0.36 and −0.51), STAI (r = −0.27 and −0.39), and DASS21 (r = −0.32 and −0.41) scales on days 0 and 3, respectively. The final PAC-QoL questionnaire was sensitive to change over time, with changes significantly relating to changes in cough score measures (P < .001). Conclusion The 16-item PAC-QoL is a reliable and valid outcome measure that assesses QoL related to childhood acute cough at a given time point and reflects changes in acute cough-specific QoL over time.
Resumo:
Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included “marrying” ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Resumo:
Pollens from diverse grass plants are main contributors to seasonal inhalant allergies worldwide. Grass group 1 and 5 allergens represent highly cross-reactive and potent major allergens, group 5 present only in temperate climate grasses (Pooideae). Depending on climate and region, global sensitization rates to grass pollen vary between 1% to 30% of the general population,. Strong evidence supports specific immunotherapy with grass pollen extracts.
Resumo:
Background Despite the critical role of immunoglobulin E (IgE) in allergy, circulating IgE+ B cells are scarce. Here, we describe in patients with allergic rhinitis B cells with a memory phenotype responding to a prototypic aeroallergen. Methods Fifteen allergic rhinitis patients with grass pollen allergy and 13 control subjects were examined. Blood mononuclear cells stained with carboxyfluorescein diacetate succinimidyl ester (CFSE) were cultured with Bahia grass pollen. Proliferation and phenotype were assessed by multicolour flow cytometry. Results In blood of allergic rhinitis patients with high serum IgE to grass pollen, most IgEhi cells were CD123+ HLA-DR- basophils, with IgE for the major pollen allergen (Pas n 1). Both B and T cells from pollen-allergic donors showed higher proliferation to grass pollen than nonallergic donors (P = 0.002, and 0.010, respectively), whereas responses to vaccine antigens and mitogen did not differ between groups. Allergen-driven B cells that divided rapidly (CD19mid CD3- CFSElo) showed higher CD27 (P = 0.008) and lower CD19 (P = 0.004) and CD20 (P = 0.004) expression than B cells that were slow to respond to allergen (CD19hi CD3- CFSEmid). Moreover, rapidly dividing allergen-driven B cells (CD19mid CFSElo CD27hi) showed higher expression of the plasmablast marker CD38 compared with B cells (CD19hi CFSEmid CD27lo) that were slow to divide. Conclusion Patients with pollen allergy but not control donors have a population of circulating allergen-specific B cells with the phenotype and functional properties of adaptive memory B-cell responses. These cells could provide precursors for allergen-specific IgE production upon allergen re-exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Resumo:
Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.
Resumo:
Background Genomic data are lacking for many allergen sources. To circumvent this limitation, we implemented a strategy to reveal the repertoire of pollen allergens of a grass with clinical importance in subtropical regions, where an increasing proportion of the world's population resides. Objective We sought to identify and immunologically characterize the allergenic components of the Panicoideae Johnson grass pollen (JGP; Sorghum halepense). Methods The total pollen transcriptome, proteome, and allergome of JGP were documented. Serum IgE reactivities with pollen and purified allergens were assessed in 64 patients with grass pollen allergy from a subtropical region. Results Purified Sor h 1 and Sor h 13 were identified as clinically important allergen components of JGP with serum IgE reactivity in 49 (76%) and 28 (43.8%), respectively, of patients with grass pollen allergy. Within whole JGP, multiple cDNA transcripts and peptide spectra belonging to grass pollen allergen families 1, 2, 4, 7, 11, 12, 13, and 25 were identified. Pollen allergens restricted to subtropical grasses (groups 22-24) were also present within the JGP transcriptome and proteome. Mass spectrometry confirmed the IgE-reactive components of JGP included isoforms of Sor h 1, Sor h 2, Sor h 13, and Sor h 23. Conclusion Our integrated molecular approach revealed qualitative differences between the allergenic components of JGP and temperate grass pollens. Knowledge of these newly identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with grass pollen allergy in subtropical regions and reduce the burden of allergic respiratory disease globally.
Resumo:
Background Pollens of the Panicoideae subfamily of grasses including Bahia (Paspalum notatum) are important allergen sources in subtropical regions of the world. An assay for specific IgE to the major molecular allergenic component, Pas n 1, of Bahia grass pollen (BaGP) would have immunodiagnostic utility for patients with pollen allergy in these regions. Methods Biotinylated Pas n 1 purified from BaGP was coated onto streptavidin ImmunoCAPs. Subjects were assessed by clinical history of allergic rhinitis and skin prick test (SPT) to aeroallergens. Serum total, BaGP-specific and Pas n 1-specific IgE were measured. Results: Pas n 1 IgE concentrations were highly correlated with BaGP SPT (r = 0.795, p < 0.0001) and BaGP IgE (r = 0.915, p < 0.0001). At 0.23 kU/l Pas n 1 IgE, the diagnostic sensitivity (92.4%) and specificity (93.1%) for the detection of BaGP allergy was high (area under receiver operator curve 0.960, p < 0.0001). The median concentrations of Pas n 1 IgE in non-Atopic subjects (0.01 kU/l, n = 67) and those with other allergies (0.02 kU/l, n = 59) showed no inter-group difference, whilst grass pollen-Allergic patients with allergic rhinitis showed elevated Pas n 1 IgE (6.71 kU/l, n = 182, p < 0.0001). The inter-Assay coefficient of variation for the BaGP-Allergic serum pool was 6.92%. Conclusions Pas n 1 IgE appears to account for most of the BaGP-specific IgE. This molecular component immunoassay for Pas n 1 IgE has potential utility to improve the sensitivity and accuracy of diagnosis of BaGP allergy for patients in subtropical regions.
Resumo:
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.
Resumo:
Our understanding of the origin and fate of the IgE-switched B cell has been markedly improved by studies in mouse models. The immediate precursor of the IgE-switched B cell is either a relatively naive nonswitched B cell or a mature IgG-switched B cell. These 2 routes are referred to as the direct and indirect pathways, respectively. IgE responses derived from each pathway differ significantly, largely reflecting the difference in time spent in a germinal center and thus time for clonal expansion, somatic hypermutation, affinity maturation, and acquisition of a memory phenotype. The clinical and therapeutic implications for IgE responses in human subjects are still a matter of debate, largely because the immunization procedures used in the animal models are significantly different from classical atopic sensitization to allergens from pollen and mites. On the basis of the limited information available, it seems likely that these atopic IgE responses are characterized by a relatively low IgG/IgE ratio, low B-cell memory, and modest affinity maturation, which fits well with the direct switching pathway. It is still unresolved how the IgE response evolves to cover a wide epitope repertoire involving many epitopes per allergen, as well as many different allergens from a single allergen source. © 2013 American Academy of Allergy, Asthma & Immunology.
Resumo:
Background Bahia grass pollen (BaGP) is a major cause of allergic rhinitis. Subcutaneous allergen-specific immunotherapy is effective for grass pollen allergy, but is unsuitable for patients with moderate to severe asthma due to the risk of anaphylaxis. T cell-reactive but IgE nonreactive peptides provide a safer treatment option. This study aimed to identify and characterize dominant CD4+ T cell epitope peptides of the major BaGP allergen, Pas n 1. Methods Pas n 1-specific T cell lines generated from the peripheral blood of BaGP-allergic subjects were tested for proliferative and cytokine response to overlapping 20-mer Pas n 1 peptides. Cross-reactivity to homologous peptides from Lol p 1 and Cyn d 1 of Ryegrass and Bermuda grass pollen, respectively, was assessed using Pas n 1 peptide-specific T cell clones. MHC class II restriction of Pas n 1 peptide T cell recognition was determined by HLA blocking assays and peptide IgE reactivity tested by dot blotting. Results Three Pas n 1 peptides showed dominant T cell reactivity; 15 of 18 (83%) patients responded to one or more of these peptides. T cell clones specific for dominant Pas n 1 peptides showed evidence of species-specific T cell reactivity as well as cross-reactivity with other group 1 grass pollen allergens. The dominant Pas n 1 T cell epitope peptides showed HLA binding diversity and were non-IgE reactive. Conclusions The immunodominant T cell-reactive Pas n 1 peptides are candidates for safe immunotherapy for individuals, including those with asthma, who are allergic to Bahia and possibly other grass pollens.
Resumo:
Background Group 1 grass pollen allergens are glycoproteins of the β-expansin family. They are a predominant component of pollen and are potent allergens with a high frequency of serum IgE reactivity in grass pollen-allergic patients. Bahia grass is distinct from temperate grasses and has a prolonged pollination period and wide distribution in warmer climates. Here we describe the purification of the group 1 pollen allergen, Pas n 1, from Bahia grass (Paspalum notatum), an important subtropical aeroallergen source. Methods Pas n 1 was purified from an aqueous Bahia grass pollen extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography, and assessed by one- and two-dimensional gel electrophoresis, immunoblotting and ELISA. Results Pas n 1 was purified to a single 29-kDa protein band containing two dominant isoforms detected by an allergen-specific monoclonal antibody and serum IgE of a Bahia grass pollen-allergic donor. The frequency of serum IgE reactivity with purified Pas n 1 in 51 Bahia grass pollen-allergic patients was 90.6%. Serum IgE reactivity with purified Pas n 1 was highly correlated with serum IgE reactivity with Bahia grass pollen extract and recombinant Pas n 1 (r = 0.821 and 0.913, respectively). Conclusions Pas n 1 is a major allergen reactive at high frequency with serum IgE of Bahia grass pollen-allergic patients. Purified natural Pas n 1 has utility for improved specific diagnosis and immunotherapy for Bahia grass pollen allergy.
Resumo:
Bahia grass, Paspalum notatum, is an important pollen allergen source with a long season of pollination and wide distribution in subtropical and temperate regions. We aimed to characterize the 55. kDa allergen of Bahia grass pollen (BaGP) and ascertain its clinical importance. BaGP extract was separated by 2D-PAGE and immunoblotted with serum IgE of a grass pollen-allergic patient. The amino-terminal protein sequence of the predominant allergen isoform at 55. kDa had similarity with the group 13 allergens of Timothy grass and maize pollen, Phl p 13 and Zea m 13. Four sequences obtained by rapid amplification of the allergen cDNA ends represented multiple isoforms of Pas n 13. The predicted full length cDNA for Pas n 13 encoded a 423 amino acid glycoprotein including a signal peptide of 28 residues and with a predicted pI of 7.0. Tandem mass spectrometry of tryptic peptides of 2D gel spots identified peptides specific to the deduced amino acid sequence for each of the four Pas n 13 cDNA, representing 47% of the predicted mature protein sequence of Pas n 13. There was 80.6% and 72.6% amino acid identity with Zea m 13 and Phl p 13, respectively. Reactivity with a Phl p 13-specific monoclonal antibody AF6 supported designation of this allergen as Pas n 13. The allergen was purified from BaGP extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. Purified Pas n 13 reacted with serum IgE of 34 of 71 (48%) grass pollen-allergic patients and specifically inhibited IgE reactivity with the 55. kDa band of BaGP for two grass pollen-allergic donors. Four isoforms of Pas n 13 from pI 6.3-7.8 had IgE-reactivity with grass pollen allergic sera. The allergenic activity of purified Pas n 13 was demonstrated by activation of basophils from whole blood of three grass pollen-allergic donors tested but not control donors. Pas n 13 is thus a clinically relevant pollen allergen of the subtropical Bahia grass likely to be important in eliciting seasonal allergic rhinitis and asthma in grass pollen-allergic patients.