974 resultados para ALKYLPHOSPHINE OXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented is a thermodynamic feasibility analysis of extracting base metal chlorides fiom low-grade,multimetallic oxide ores using CaClz as a chlorinating agent in the presence of SOz undoz. The oxides react to form corresponding chlorides, while CaClz is converted to CaS04. The Ellingham diagram is usedfor comparing the standard Gibbs' fiee energy chanlpef or the su(fation-chlorinationr eaction of a large number of oxides. Except for alumina, silica and chromia, most of the other metal oxides will be converted to their respective chlorides. The volatile chlorides can be condensed, and the chlorides present in the condensed state can be leached. A process is proposed that uses a nontoxic chlorinating agent and gives an eficient sepurutiort cftlte metallic vuluesfr.om the garlgue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Nd-Pd-O at 1350 K has been established by equilibration of samples representing 13 different compositions and phase identification after quenching by optical and scanning electron microscopy, x-ray diffraction, and energy dispersive analysis of x-rays. The binary oxides PdO and NdO were not stable at 1350 K. Two ternary oxides Nd4PdO7 and Nd2Pd2O5 were identified. Solid and liquid alloys, as well as the intermetallics NdPd3 and NdPd5, were found to be in equilibrium with Nd2O3. Based on the phase relations, three solidstate cells were designed to measure the Gibbs energies of formation of PdO and the two ternary oxides. An advanced version of the solid-state cell incorporating a buffer electrode was used for high-temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MP a as the reference electrode. Electromotive force measurements, conducted from 950 to 1425 K, indicated the presence of a third ternary oxide Nd2PdO4, stable below 1135 (±10) K. Additional cells were designed to study this compound. The standard Gibbs energy of formation of PdO (†f G 0) was measured from 775 to 1125 Kusing two separate cell designs against the primary reference standard for oxygen chemical potential. Based on the thermodynamic information, chemical potential diagrams for the system Nd-Pd-O were also developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced design of the solid-state cell incorporating a buffer electrode has been developed for high temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The application of the novel design and its advantages have been demonstrated by measuring the standard Gibbs energies of formation of ternary oxides of the system Sm–Pd–O. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sm–Pd–O were investigated at 1273 K. The two ternary oxides, Sm4PdO7 and Sm2Pd2O5, compositions of which fall on the Sm2O3–PdO join, were found to coexist with pure metal Pd. The thermodynamic properties of the ternary oxides were measured using three-phase electrodes in the temperature range 950–1425 K. During electrochemical measurements a third ternary oxide, Sm2PdO4, was found to be stable at low temperature. The standard Gibbs energies of formation (Δf(ox)Go) of the compounds from their component binary oxides Sm2O3 and PdO, can be represented by the equations: Sm4PdO7: Δf(ox)Go (J mol−1)=−34,220+0.84T(K) (±280); Sm2PdO4: Δf(ox)Go (J mol−1)=−33,350+2.49T(K) (±230); Sm2Pd2O5: Δf(ox)Go (J mol−1)=−59,955+1.80T(K) (±320). Based on the thermodynamic information, three-dimensional P–T–C and chemical potential diagrams for the system Sm–Pd–O were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetragonal ZrO(2), synthesized by solution combustion technique, was found to be photocatalytically active for the degradation of anionic dyes. The compound was characterized by FT-Raman spectroscopy, X-ray photoelectron spectroscopy, FT-infrared spectroscopy, UV-vis spectroscopy, BET surface area analysis, and zero point charge pH measurement. A high concentration of surface hydroxyl groups was observed over the catalyst, as confirmed by XPS and FUR. The photocatalytic degradation of orange G, amido black, remazol brilliant blue R, and alizarin cyanine green (ACG) was carried out with this material. The effect of pH, inorganic. salts, and H(2)O(2) on the activity of the catalyst was also studied, and it was found that the catalyst maintained its activity at a wide range of pH and in the presence of inorganic salts. Having established that ZrO(2) was photocatalytically active, mixed oxide catalysts of TiO(2)-ZrO(2) were also tested for the photocatalytic degradation of ACG, and the 50% ZrO(2)-TiO(2) mixed oxides showed activity that was comparable to the activity of TiO(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoemission spectroscopy offers the unique possibility of mapping out the electronic structure of the occupied electron states. However, the extreme surface sensitivity of this technique ensures that only the surface and the near-surface regions of any sample are probed. An important question arises in this context—Is the electronic structure of the surface region the same as that of the bulk? We address this issue using two different series of vanadium oxides, Ca1−xSrxVO3 and La1−xCaxVO3. Our results clearly establish that the electronic structure of the surface region is drastically different from that of the bulk in both these cases. We provide a method to separate the two contributions: one arising from the near-surface region and the other representative of the bulk. This separation allows us to deduce some very unusual behaviors of the electronic structures in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 °C. The studies were conducted at different temperatures and the results were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports investigation of Na2O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are very few magnetic members among the 4d and 5d transition metal oxides. In the present work, we examine the recent observation of a high Neel temperature T-N in the 4d oxides SrTcO3 and CaTcO3. Considering a multiband Hubbard model, we find that T-N is larger in the limit of a large bandwidth and vanishingly small intra-atomic exchange interaction strength, contrary to our conventional understanding of magnetism. This is traced to specific aspects of the d(3) configuration at the transition metal site and the study reveals additional examples with high T-N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ADVANCED MULTIFUNCTIONAL INORGANIC NANOSTRUCTURED OXIDES FOR CONTROLLED RELEASE AND SENSING. We demonstrate here certain examples of multifunctional nanostructured oxidematerials for biotechnological and environmental applications.Various in-house synthesized homogeneous nanostructured viz.mesoporous and nanotubes silica and titania have been employed for controlled drug delivery and electrochemical biosensing applications. Confinement of macromolecules such as proteins studied via electrochemical, thermal and spectroscopic methods showed no detrimental effect on native protein structure and function, thus suggesting effective utility of oxide nanostructures as bio-encapsulators. Multi-functionalitywas demonstrated via employing similar nanostructures for sensing organic water pollutants e.g. textile dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic activity of commercial titanium dioxide under UV and visible radiation was improved by composites of tungsten trioxide (WO3) with TiO2. WO3 was prepared by solution combustion synthesis and the mixed oxides/composites of WO3-TiO2 were prepared in different weight ratios (0, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1) by physical mixing. These catalysts were characterized by XRD, DRS, BET, SEM, TEM, pH drift method, TGA and photoluminescence. The photocatalytic activity varies with the WO3 loading in the composites. The optimum loading of WO3 in the composites was found to be 15 wt% for both UV and visible radiation. This loading showed faster dye degradation rate than commercial TiO2 (TiO2-C) and WO3 (WO3-C). The effect of initial concentrations of methylene blue (MB) and orange G (OG) and the effect of the functional group on dye degradation was studied with both anionic and cationic dyes with 15 wt% WO3-TiO2. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanism of ion transport in glasses continues to be incompletely understood. Several of the theoretical models in vogue fail to rationalize conductivity behaviour when d.c. and a.c. measurements are considered together. While they seem to involve the presence of at least two components in d.c. activation energy, experiments fail to reveal that feature. Further, only minor importance is given to the influence of structure of the glass on the ionic conductivity behaviour. In this paper, we have examined several general aspects of ion transport taking the example of ionically conducting glasses in pseudo binary, yNa(2)B(4)O(7)center dot(1-y) M (a) O (b) (with y = 0 center dot 25-0 center dot 79 and M (a) O (b) = PbO, TeO2 and Bi2O3) system of glasses which have also been recently characterized. Ion transport in them has been studied in detail. We have proposed that non-bridging oxygen (NBO) participation is crucial to the understanding of the observed conductivity behaviour. NBO-BO switching is projected as the first important step in ion transport and alkali ion jump is a subsequent event with a characteristically lower barrier which is, therefore, not observed in any study. All important observations in d.c. and a.c. transport in glasses are found consistent with this model.