965 resultados para AIR POLLUTION IN MEGACITIES
Resumo:
Background: Even though air pollutants exposure is associated with changes in the ocular surface and tear film, its relationship to the clinical course of blepharitis, a common eyelid disease, had not yet been investigated. Our objective was to investigate the correlation between air pollution and acute manifestations of blepharitis. Method: We recorded all cases of changes in the eyelids and ocular surface, and rated clinical findings on a scale from zero (normal) to two (severe alterations). Daily values of carbon monoxide, particulate matter smaller than 10 mu m in diameter and nitrogen dioxide concentrations and meteorological variables (temperature and relative humidity) in the vicinity of the medical service were obtained. Specific linear regression models for each outcome were constructed including pollutants as independent variables (single pollutant models). Temperature and humidity were included as confounding variables. Results: increases of 28.8 mu g/m(3) in the concentration of particulate matter and 1.1 ppm in the concentration of CO were associated with increases in cases of blepharitis on the day of exposure (5 cases, 95% CI: 1-10 and 6 cases, 95% CI: 1-12, respectively). Conclusion: Exposure to usual air pollutants concentrations present in large cities affects, in a consistent manner, the eyes of residents contributing to the increasing incidence of diseases of the eyelid margin. (C) 2011 Elsevier Inc. All rights reserved.
Weibull and generalised exponential overdispersion models with an application to ozone air pollution
Resumo:
We consider the problem of estimating the mean and variance of the time between occurrences of an event of interest (inter-occurrences times) where some forms of dependence between two consecutive time intervals are allowed. Two basic density functions are taken into account. They are the Weibull and the generalised exponential density functions. In order to capture the dependence between two consecutive inter-occurrences times, we assume that either the shape and/or the scale parameters of the two density functions are given by auto-regressive models. The expressions for the mean and variance of the inter-occurrences times are presented. The models are applied to the ozone data from two regions of Mexico City. The estimation of the parameters is performed using a Bayesian point of view via Markov chain Monte Carlo (MCMC) methods.
Resumo:
Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF). UCs were analysed stereologically and by immunohistochemistry to localize isoprostane and endothelin receptors. The cords of mice from NF chambers were smaller in volume due to loss of mucoid connective tissue and decrease in volume of collagen. These structural changes and in umbilical vessels were associated with greater volumes of regions immunostained for isoprostane, ETAR and ETBR. Findings indicate that the adverse effects of PM on birth weight may be mediated in part by alterations in UC structure or imbalances in the endogenous regulators of vascular tone and oxidative stress. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.
Resumo:
[EN]In this talk we introduce a new methodology for wind field simulation or forecasting over complex terrain. The idea is to use wind measurements or predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1,2]. The method has been recently implemented in the freely-available Wind3D code [3]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [4]. The results of HARMONIE (obtained with a maximum resolution about 1 Km) are refined by the finite element model in a local scale (about a few meters). An interface between both models is implemented such that the initial wind field approximation is obtained by a suitable interpolation of the HARMONIE results…
Resumo:
Objective: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. Methods: We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. Results: We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Conclusion: Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.
Resumo:
There is increasing evidence of the adverse impact of prenatal exposure to air pollution. This is of particular interest, as exposure during pregnancy--a crucial time span of important biological development--may have long-term implications. The aims of this review are to show current epidemiological evidence of known effects of prenatal exposure to air pollution and present possible mechanisms behind this process. Harmful effects of exposure to air pollution during pregnancy have been shown for different birth outcomes: higher infant mortality, lower birth weight, impaired lung development, increased later respiratory morbidity, and early alterations in immune development. Although results on lower birth weight are somewhat controversial, evidence for higher infant mortality is consistent in studies published worldwide. Possible mechanisms include direct toxicity of particles due to particle translocation across tissue barriers or particle penetration across cellular membranes. The induction of specific processes or interaction with immune cells in either the pregnant mother or the fetus may be possible consequences. Indirect effects could be oxidative stress and inflammation with consequent hemodynamic alterations resulting in decreased placental blood flow and reduced transfer of nutrients to the fetus. The early developmental phase of pregnancy is thought to be very important in determining long-term growth and overall health. So-called "tracking" of somatic growth and lung function is believed to have a huge impact on long-term morbidity, especially from a public health perspective. This is particularly important in areas with high levels of outdoor pollution, where it is practically impossible for an individual to avoid exposure. Especially in these areas, good evidence for the association between prenatal exposure to air pollution and infant mortality exists, clearly indicating the need for more stringent measures to reduce exposure to air pollution.
Resumo:
While many time-series studies of ozone and daily mortality identified positive associations,others yielded null or inconclusive results. We performed a meta-analysis of 144 effect estimates from 39 time-series studies, and estimated pooled effects by lags, age groups,cause-specific mortality, and concentration metrics. We compared results to estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a time-series study of 95 large U.S. cities from 1987 to 2000. Both meta-analysis and NMMAPS results provided strong evidence of a short-term association between ozone and mortality, with larger effects for cardiovascular and respiratory mortality, the elderly, and current day ozone exposure as compared to other single day lags. In both analyses, results were not sensitive to adjustment for particulate matter and model specifications. In the meta-analysis we found that a 10 ppb increase in daily ozone is associated with a 0.83 (95% confidence interval: 0.53, 1.12%) increase in total mortality, whereas the corresponding NMMAPS estimate is 0.25%(0.12, 0.39%). Meta-analysis results were consistently larger than those from NMMAPS,indicating publication bias. Additional publication bias is evident regarding the choice of lags in time-series studies, and the larger heterogeneity in posterior city-specific estimates in the meta-analysis, as compared with NMAMPS.
Resumo:
Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.
Resumo:
Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56±4 in BJ and 46±5% in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54% in BJ, and 40, 15 and 46% in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71% in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.
Resumo:
Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.
Resumo:
The last decade, scientific studies have indicated an association between air pollution to which people are exposed and wide range of adverse health outcomes. We have developed a tool which is based on a model (MM5-CMAQ) running over Europe with 50 km spatial resolution, based on EMEP annual emissions, to produce a short-term forecast of the impact on health. In order to estimate the mortality change (forecasted for the next 24 hours) we have chosen a log-linear (Poisson) regression form to estimate the concentration-response function. The parameters involved in the C-R function have been estimated based on epidemiological studies, which have been published. Finally, we have derived the relationship between concentration change and mortality change from the C-R function which is the final health impact function.
Resumo:
Earlier ed., 1965, issued by U.S. Robert A. Taft Sanitary Engineering Center, Cincinnati.
Resumo:
Mode of access: Internet.
Resumo:
"French report adapted under contract no. 68-01-5915."