918 resultados para ACTIVATED PROTEIN-C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the mitogen-activated protein kinase kinase (MKK)/extracellular-activated protein kinase (ERK) pathway in mitotic Golgi disassembly is controversial, in part because Golgi-localized targets have not been identified. We observed that Golgi reassembly stacking protein 55 (GRASP55) was phosphorylated in mitotic cells and extracts, generating a mitosis-specific phospho-epitope recognized by the MPM2 mAb. This phosphorylation was prevented by mutation of ERK consensus sites in GRASP55. GRASP55 mitotic phosphorylation was significantly reduced, both in vitro and in vivo, by treatment with U0126, a potent and specific inhibitor of MKK and thus ERK activation. Furthermore, ERK2 directly phosphorylated GRASP55 on the same residues that generated the MPM2 phospho-epitope. These results are the first demonstration of GRASP55 mitotic phosphorylation and indicate that the MKK/ERK pathway directly phosphorylates the Golgi during mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein C activation on the surface of the endothelium is critical to the negative regulation of blood coagulation. We now demonstrate that monoclonal antibodies that block protein C binding to the endothelial cell protein C receptor (EPCR) reduce protein C activation rates by the thrombin-thrombomodulin complex on endothelium, but that antibodies that bind to EPCR without blocking protein C binding have no effect. The kinetic result of blocking the EPCR-protein C interaction is an increased apparent Km for the activation without altering the affinity of thrombin for thrombomodulin. Activation rates of the protein C derivative lacking the gamma-carboxyglutamic acid domain, which is required for binding to EPCR, are not altered by the anti-EPCR antibodies. These data indicate that the protein C activation complex involves protein C, thrombin, thrombomodulin, and EPCR. These observations open new questions about the control of coagulation reactions on vascular endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centromere proteins are localized within the centromere-kinetochore complex, which can be proven by means of immunofluorescence microscopy and immunoelectron microscopy. In consequence, their putative functions seem to be related exclusively to mitosis, namely to the interaction of the chromosomal kinetochores with spindle microtubules. However, electron microscopy using immune sera enriched with specific antibodies against human centromere protein C (CENP-C) showed that it occurs not only in mitosis but during the whole cell cycle. Therefore, we investigated the cell cycle-specific expression of CENP-C systematically on protein and mRNA levels applying HeLa cells synchronized in all cell cycle phases. Immunoblotting confirmed protein expression during the whole cell cycle and revealed an increase of CENP-C from the S phase through the G2 phase and mitosis to highest abundance in the G1 phase. Since this was rather surprising, we verified it by quantifying phase-specific mRNA levels of CENP-C, paralleled by the amplification of suitable internal standards, using the polymerase chain reaction. The results were in excellent agreement with abundant protein amounts and confirmed the cyclic behavior of CENP-C during the cell cycle. In consequence, we postulate that in addition to its role in mitosis, CENP-C has a further role in the G1 phase that may be related to cell cycle control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RAS2val19, a dominant activated form of Saccharomyces cerevisiae Ras2, stimulates both filamentous growth and expression of a transcriptional reporter FG(TyA)::lacZ but does not induce the mating pathway reporter FUS1::lacZ. This induction depends upon elements of the conserved mitogen-activated protein kinase (MAPK) pathway that is required for both filamentous growth and mating, two distinct morphogenetic events. Full induction requires Ste20 (homolog of mammalian p65PAK protein kinases), Ste11 [an MEK kinase (MEKK) or MAPK kinase (MEK) kinase], Ste7 (MEK or MAPK kinase), and the transcription factor Ste12. Moreover, the Rho family protein Cdc42, a conserved morphogenetic G protein, is also a potent regulator of filamentous growth and FG(TyA)::lacZ expression in S. cerevisiae. Stimulation of both filamentous growth and FG(TyA)::lacZ by Cdc42 depends upon Ste20. In addition, dominant negative CDC42Ala118 blocks RAS2val19 activation, placing Cdc42 downstream of Ras2. Our results suggest that filamentous growth in budding yeast is regulated by an evolutionarily conserved signaling pathway that controls cell morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitogen-activated protein kinase (MAPK) is selectively activated by injecting either mos or MAPK kinase (mek) RNA into immature mouse oocytes maintained in the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). IBMX arrests oocyte maturation, but Mos (or MEK) overexpression overrides this block. Under these conditions, meiosis I is significantly prolonged, and MAPK becomes fully activated in the absence of p34cdc2 kinase or maturation-promoting factor. In these oocytes, large openings form in the germinal vesicle adjacent to condensing chromatin, and microtubule arrays, which stain for both MAPK and centrosomal proteins, nucleate from these regions. Maturation-promoting factor activation occurs later, concomitant with germinal vesicle breakdown, the contraction of the microtubule arrays into a precursor of the spindle, and the redistribution of the centrosomal proteins into the newly forming spindle poles. These studies define important new functions for the Mos/MAPK cascade in mouse oocyte maturation and, under these conditions, reveal novel detail of the early stages of oocyte meiosis I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clotting factor XII (Hageman factor) contains epidermal growth factor (EGF)-homologous domains and is reported to be a potent mitogen for human hepatoma (HepG2) cells. In this study, we tested whether factor XII exhibits growth factor activity on several other EGF-sensitive target cells, including fetal hepatocytes, endothelial cells, alveolar type II cells, and aortic smooth muscle cells. We found that factor XII significantly enhanced [3H]thymidine incorporation in aortic smooth muscle cells (SMCs) and all other cells tested. Tyrphostin, a growth factor receptor/tyrosine kinase antagonist, inhibited both EGF- and factor XII-induced responses. However, differences in the levels of magnitude of DNA synthesis, the observed synergism between EGF and factor XII, and the differential sensitivity to tyrphostin suggest that the EGF receptor and the factor XII receptor may be nonidentical. The factor XII-induced mitogenic response was achieved at concentrations that were 1/10th the physiologic range for the circulating factor and was reduced by popcorn inhibitor, a specific factor XII protease inhibitor. Treatment of aortic SMCs with factor XII, as well as activated factor XII, resulted in a rapid and transient activation of a mitogen-activated/extracellular signal-regulated protein kinase with peak activity/tyrosine phosphorylation observed at 5 to 10 min of exposure. Taken together, these data (i) confirm that clotting factor XII functions as a mitogenic growth factor and (ii) demonstrate that factor XII activates a signal transduction pathway, which includes a mitogen-activated protein kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here the cloning and characterization of a cDNA encoding a protein kinase that has high sequence homology to members of the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK or MEKK) family; this cDNA is named cATMEKKI (Arabidopsis thaliana MAP kinase or ERK kinase kinase 1). The catalytic domain of the putative ATMEKK1 protein shows approximately 40% identity with the amino acid sequences of the catalytic domains of MAPKKKs (such as Byr2 from Schizosaccharomyces pombe, Ste11 from Saccharomyces cerevisiae, Bck1 from S. cerevisiae, MEKK from mouse, and NPK1 from tobacco). In yeast cells that overexpress ATMEKK1, the protein kinase replaces Ste11 in responding to mating pheromone. In this study, the expression of three protein kinases was examined by Northern blot analyses: ATMEKK1 (structurally related to MAPKKK), ATMPK3 (structurally related to MAPK), and ATPK19 (structurally related to ribosomal S6 kinase). The mRNA levels of these three protein kinases increased markedly and simultaneously in response to touch, cold, and salinity stress. These results suggest that MAP kinase cascades, which are thought to respond to a variety of extracellular signals, are regulated not only at the posttranslational level but also at the transcriptional level in plants and that MAP kinase cascades in plants may function in transducing signals in the presence of environmental stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of cells with a variety of growth factors triggers a phosphorylation cascade that leads to activation of mitogen-activated protein kinases (MAPKs, also called extracellular signal-regulated kinases, or ERKs). We have identified a synthetic inhibitor of the MAPK pathway. PD 098059 [2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one] selectively inhibited the MAPK-activating enzyme, MAPK/ERK kinase (MEK), without significant inhibitory activity of MAPK itself. Inhibition of MEK by PD 098059 prevented activation of MAPK and subsequent phosphorylation of MAPK substrates both in vitro and in intact cells. Moreover, PD 098059 inhibited stimulation of cell growth and reversed the phenotype of ras-transformed BALB 3T3 mouse fibroblasts and rat kidney cells. These results indicate that the MAPK pathway is essential for growth and maintenance of the ras-transformed phenotype. Further, PD 098059 is an invaluable tool that will help elucidate the role of the MAPK cascade in a variety of biological settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visfatin is an adipogenic adipokine with increased levels in obesity, properties common to leptin. Thus, leptin may modulate visfatin production in adipose tissue (AT). Therefore, we investigated the effects of leptin on visfatin levels in 3T3-L1 adipocytes and human/murine AT, with or without a leptin antagonist. The potential signaling pathways and mechanisms regulating visfatin production in AT was also studied. Real-time RT-PCR and Western blotting were used to assess the relative mRNA and protein expression of visfatin. ELISA was performed to measure visfatin levels in conditioned media of AT explants, and small interfering RNA technology was used to reduce leptin receptor expression. Leptin significantly (P<0.01) increased visfatin levels in human and murine AT with a maximal response at leptin 10(-9) M, returning to baseline at leptin 10(-7) M. Importantly, ip leptin administration to C57BL/6 ob/ob mice further supported leptin-induced visfatin protein production in omental AT (P<0.05). Additionally, soluble leptin receptor levels rose with concentration dependency to a maximal response at leptin 10(-7) M (P<0.01). The use of a leptin antagonist negated the induction of visfatin and soluble leptin receptor by leptin. Furthermore, leptin-induced visfatin production was significantly decreased in the presence of MAPK and phosphatidylinositol 3-kinase inhibitors. Also, when the leptin eceptor gene was knocked down using small interfering RNA, eptin-induced visfatin expression was significantly decreased. Thus, leptin increases visfatin production in AT in vivo and ex vivo via pathways involving MAPK and phosphatidylinositol 3-kinase signaling. The pleiotropic effects of leptin may be partially mediated by visfatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE-/- mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE-/- mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE-/- mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE-/- mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance.