985 resultados para A1-2


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autor tomado del tomo 1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of adenosine analogues substituted in the 2- and N6-positions were synthesized and evaluated for affinity, functional potency and intrinsic activity at the A1 and A2A adenosine receptors (AR). Three classes of N6-substituents were tested; norbornen-2-yl (series 1), norborn-2-yl (series 2) and 5,6-epoxynorborn-2-yl (series 3). The halogens; fluoro, bromo, and iodo were evaluated as C-2 substituents. All compounds showed relatively high affinity (nanomolar) for the A1AR and high potency for inhibiting (−)isoproterenol-stimulated cAMP accumulation in hamster smooth muscle DDT1 MF-2 cells with the 2-fluoro derivatives from each series having the highest affinity. All of the derivatives showed the same intrinsic activity as CPA. At the A2AAR, all of the derivatives showed relatively low affinity and potency (micromolar) for stimulating cAMP accumulation in rat pheochromocytoma PC-12 cells. The intrinsic activity of the derivatives compared to CGS 21680 was dependent upon the halogen substituent in the C-2 position with most showing partial agonist activity. Of particular interest is 2-iodo-N6-(2S-endo-norborn-2-yl)adenosine (5e), which is over 100-fold selective for the A1AR, is a full agonist at this receptor subtype and has no detectable agonist activity at the A2AAR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2-Amino-3-benzoylthiophenes are allosteric enhancers (AE) of agonist activity at the A1 adenosine receptor. The present report describes syntheses and assays of the AE activity at the human A1AR (hA1AR) of a panel of compounds consisting of nine 2-amino-3-aroylthiophenes (3a-i), eight 2-amino-3-benzoyl-4,5-dimethylthiophenes (12a-h), three 3-aroyl-2-carboxy-4,5- dimethylthiophenes (15a-c), 10 2-amino-3-benzoyl-5,6-dihydro 4H-cyclopenta[b]thiophenes (17a-j), 14 2-amino-3-benzoyl-4,5,6,7-tetrahydrobenzo[b]thiophenes (18a-n), and 15 2-amino- 3-benzoyl-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophenes (19a-o). An in vitro assay employing the A1AR agonist [125I]ABA and membranes from CHO-K1 cells stably expressing the hA1AR measured, as an index of AE activity, the ability of a candidate AE to stabilize the agonist- A1AR-G protein ternary complex. Compounds 3a-i had little or no AE activity, and compounds 12a-h had only modest activity, evidence that AE activity depended absolutely on the presence of at least a methyl group at C-4 and C-5. Compounds 17a-c lacked AE activity, suggesting the 2-amino group is essential. Polymethylene bridges linked thiophene C-4 and C-5 of compounds 17a-j, 18a-n, and 19a-o. AE activity increased with the size of the -(CH2)n- bridge, n ) 3 < n ) 4 < n ) 5. The 3-carbethoxy substituents of 17a, 18a, and 19a did not support AE activity, but a 3-aroyl group did. Bulky (or hydrophobic) substituents at the meta and para positions of the 3-benzoyl group and also 3-naphthoyl groups greatly enhanced activity. Thus, the hA1AR contains an allosteric binding site able to accommodate 3-aroyl substituents that are bulky and/or hydrophobic but not necessarily planar. A second region in the allosteric binding site interacts constructively with alkyl substituents at thiophene C-4 and/or C-5.