979 resultados para 850
Resumo:
Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 degreesC using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 degreesC to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 degreesC. Films with highest perovskite content were found to form at 820-840 degreesC on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 degreesC. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan delta) of 0.035 at a frequency of 1 kHz at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
ZrO2–Al2O3 powders were synthesized by spray pyrolysis. These powders were sintered at 1 GPa in the temperature range of 700–1100 °C. The microstructural evolution and densification are reported in this paper. The application of 1 Gpa pressure lowers the crystallization temperature from ∼850 to <700 °C. Similarly, the transformation temperature under 1 GPa pressure for γ → α–Al2O3 reduces from ∼1100 to 700–800 °C range, and that for t → m ZrO2 reduces from ∼1050 to 700–800 °C range. It was possible to obtain highly dense nanocrystalline ZrO2–Al2O3 composite at temperatures as low as 700 °C. The effect of high pressure on nucleation and transformation of phases is discussed.
Resumo:
The properties of widely used Ni-Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the ``processing maps'' approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni(42)Ti(50)Cu(8) SMA. Uniaxial compression experiments were conducted in the temperature range of 800-1050 degrees C and at strain rate range of 10(-3) and 10(2) s(-1). Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800-850 degrees C and at 0.1 s(-1), which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.
Resumo:
The standard Gibbs' free energies of formation of compounds of type Cu2L%05 (Ln = Tb,Dy,Er,Yb) were measured using the solid state cell in the temperature range of 970 to 1323 K For formation of Cu2L?O5 compounds from their binary component oxides according to the reaction 2 CUO (s) + L%03 (s) -, Cu,,L%05 (s),the Gibbs' free energy changes can be represented by the following equations:AGO = 13 080 - 13.70 'I" (+80) J mol-' (Ln = Tb)AGq = 11 480 - 13.51 T (260) J mol-I (Ln = Dy)AGO = 10 750 - 13.99 T (260) J mol-I (Ln = Er)AGO = 9 920 - 13.90 T (260) J mol-' (Ln = Yb) Since formation of the compounds is endothermic, the compounds become thermodynamically unstable with respect to their component oxides below 955 K for Cu2Tb205, 850 K for Cu2Dy205, 768 K for Cu2Er205 and 714 K for Cu2Yb2OS When the oxygen partial pressure over Cu2L%05 is lowered, they decompose according to the scheme, 2 CU,L%O, (s) -r 2 L%03 (s) +2 cu20 (s) + 02(g)The equilibrium chemical potentials of oxygen corresponding to the dissociation reactions are computed from the emf data and auxiliary information on Cu20 and CuO. The computed decomposition temperatures at an oxygen partial pressure of 5.0 x ld Pa are compared with those obtained directly from combined thermogravimetric (TGA) and differential thermal analyses (DTA).The free energy, enthalpy and entropy of formation of Cu2Ln205 compounds show systematic variation with the ionic radius of the trivalent lanthanide ion. The trends obtained in this study are compared with information available in the literature. The staZbility of Cu2Ln205 compounds increases with the decrease in ionic radii of the ~ n ion~. +
Resumo:
The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.
Resumo:
We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 to 315 K covering a spectral range from 100 to 2200 cm(-1) and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering-induced phonon renormalization are evident in (1) anomalous temperature dependence of many modes with frequencies below 850 cm(-1), particularly near the magnetic transition temperature T-c approximate to 250 K, and (2) distinct changes in band positions of high-frequency Raman bands between 1100 and 1800 cm(-1); in particular, a broad mode near 1250 cm(-1) appears only below T-c, attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies similar to 100 K due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of the phonons' spectrum and their coupling with spins.
Resumo:
Reducing emissions from deforestation and forest degradation (REDD+) is considered as an important mechanism under the UNFCCC aimed at mitigating climate change. The Cancun Agreement on REDD mechanism has paved the way for designing and implementation of REDD+ activities, to assist countries experiencing large-scale deforestation and forest degradation. Contrary to the general perception, the present analysis shows that India is currently experiencing deforestation and forest degradation. According to the latest assessment of the Forest Survey of India, the net annual loss of forests is estimated to be 99,850 ha during the period 2007-2009, even though the total area under forests has increased. The REDD+ mechanism aims to provide financial incentives for reducing deforestation and forest degradation. India, despite having robust legislations, policies and remote sensing capabilities, is not ready to benefit from the emerging REDD+ mechanism, with potential flow of large financial benefits to rural and forest-dependent communities from international financial sources.
Resumo:
When people drink water having a fluoride (F-) concentration >1-1.5 mg/L for a long period of time, various ailments that are collectively referred to as fluorosis occur. Based on the design of Thomas (http://www.planetkerala.org), an inclined basin-type solar still containing sand and water has been used at Bangalore for defluoridation. For water samples having a fluoride concentration in the range 5-20 mg/L, the fluoride concentration in the distillate was usually <1.5 mg/L. During the periods October 2006 May 2007 and October 2007 May 2008, the volume of distillate showed a significant diurnal variation, ranging from 0.3 to 4.0 L/m(2).day. Based on the figures for 2006, the cost of the still was about Rs. 850 (US$16) for collector areas in the range 0.50-0.57 m(2). The occurrence of F- in the distillate merits further investigation. Overall, the still effectively removes F-, but a large area of the collector, in the range 2.5-25 m(2), is needed to produce about 10 L of distilled water for cooking and drinking. Rainwater falling on the upper surface of the still was collected, and its fluoride concentration was found to be below the desirable limit of 1 mg/L. Hence it can also be used for cooking and drinking.
Resumo:
This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The effect of Tb/Dy ratio on the structural and magnetic properties of (Tb,Dy)Fe-2 class of alloys has been investigated using nine alloys of TbxDy1-xFe1.95 (x = 0-1) covering the entire range. Our results indicate that the three phases viz. (Tb,Dy)Fe-2 (major phase), (Tb,Dy)Fe-3 and(Tb,Dy)-solid solution (minor phases) coexist in all the alloys. The volume fraction of pro-peritectic (Tb,Dy)Fe-3 phase however, has a minimum at x = 0.4 and a maximum at x = 0.6 compositions. The volume fraction of this phase decreases upon heat treatment at 850 degrees C and 1000 degrees C. A Widmanstatten type precipitate of (Tb,Dy)Fe-3 was observed for Dy-rich compositions (0 <= x <= 0.5). The microstructural investigations indicate that the ternary phase equilibria of Tb-Dy-Fe are sensitive to Tb/Dy ratio including the expansion of (Tb,Dy)Fe-2 phase field which is in contrast to the pseudo-binary assumption that is followed in available literature to date. The lattice parameter, Curie temperature and coercivity are found to increase with Tb addition. Split of (440) peak of (Tb,Dy)Fe-2 observed in x >= 0.3 alloys indicate, a spin reorientation transition from 100] to 111] occurs with Tb addition. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Sapphirine-cordierite intergrowths occur as pods within garnet-absent, high-Mg orthopyroxene-granulite xenoliths in the Kambam valley, Madurai Block, southern India. Whereas the cores of the pods are composed of sapphirine (X-Mg = 0.871-0.897) - cordierite (X-Mg = 0.892-0.931) intergrowth along with rutile, zircon and monazite, the rims are characterized by cordierite, apatite, plagioclase, K-feldspar, quartz and minor calcite. The surrounding matrix comprises orthopyroxene (maximum Al2O3 4.1 wt.%, X-Mg 0.848-0.850), plagioclase, biotite and quartz, similar to the assemblage in the surrounding charnockites. Sapphirine in the Kambam rocks is characterized by high Al contents with an end-member composition in the range of 7:9:3 and 3:5:1. The occurrence of peraluminous sapphirine in association with cordierite and in the absence of phases such as sillimanite and garnet is distinct from ultrahigh-temperature assemblages in other localities within the Madurai Block. The peraluminous composition of the pods suggests that these domains could represent cryptic pathways through which aluminous melts migrated. The reaction of such peraluminous melts with Mg-rich orthopyroxene in the host granulite at temperatures of 1025 degrees C and pressures around 8 kbar as computed from phase equilibria modeling followed by an isobaric cooling is inferred to have generated the sapphirine-cordierite pods. The unusual high-Mg orthopyroxene granulite suggests interaction of supracrustal rocks with mafic magmas, which probably acted as the heat source for the partial melting of lower crust and UHT metamorphism.
Resumo:
A purple inorganic pigment, YGa1-xMnxO3 (0 < x <= 0.10), based on hexagonal YGaO3 is reported here. The metastable series of oxides were prepared by a sol-gel technique where the dried gels, obtained from aqueous solutions of metal nitrate-citric acid mixtures, were calcined for a short duration in a preheated furnace around 850 degrees C. The purple colour of the oxides arises from the specific trigonal bipyramidal ligand field around Mn-III in a YGaO3 host. Other hexagonal RGaO3 hosts for R = Lu, Tm and Ho substituted with Mn-III also produce similar purple coloured materials.
Resumo:
We report on the synthesis, microstructure and thermal expansion studies on Ca0 center dot 5 + x/2Sr0 center dot 5 + x/2Zr4P6 -aEuro parts per thousand 2x Si-2x O-24 (x = 0 center dot 00 to 1 center dot 00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to x = 0 center dot 37. For x a parts per thousand yen 0 center dot 5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 A degrees C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at x = 0 center dot 75. The amount of hysteresis between heating and cooling curves increases progressively from x = 0 center dot 00 to 0 center dot 37 and then decreases for x > 0 center dot 37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.
Resumo:
Superplastic tensile tests on warm rolled and optimally annealed boron modified alloy Ti-6Al-4V-0.1B at a temperature of 850 degrees C and initial strain rate of 3 x 10(-4) s(-1) results in a higher elongation (similar to 500%) compared to the base alloy Ti-6Al-4V (similar to 400%). The improvement in superplasticity has been attributed to enhanced contribution from interfacial boundary sliding to the overall deformation for the boron modified alloy. The boundary sliding was facilitated by the starting microstructure which predominantly contains small equiaxed primary a grains with narrow size distribution. Dynamic processes such as coarsening and globularization of primary a phase occur under the test condition but do not significantly contribute to the observed difference in superplasticity between the two alloys. In spite of cavitation takes place around the TiB particles during deformation, they do not cause macroscopic cracking and early fracture by virtue of the cavities being extremely localized. Localized cavitation is found to correlate with increased material transfer due to faster diffusion.
Effect of low oxygen pressure on structural and magnetic properties of quenched SrFe12O19 thin films
Resumo:
Strontium hexaferrite thin films have been grown on glass substrates at room temperature in oxygen environment by pulsed laser deposition method. The effect of oxygen pressure (p(o2)) on the structural and magnetic properties has been investigated. The as-deposited films were found to be amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 850 A degrees C in air. The thickness of the film increased with p(o2). The film grown at p(o2) = 0.455 Pa had a clear hexagonal structure. The values of coercivity for the films were found to increase with p(o2).