158 resultados para 6028


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies, demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure of isolated finite graphene nanoribbons is investigated by solving, at the Hartree-Fock (HF) level, the Pariser, Parr and Pople (PPP) many-body Hamiltonian. The study is mainly focused on 7-AGNR and 13-AGNR (Armchair Graphene Nano-Ribbons), whose electronic structures have been recently experimentally investigated. Only paramagnetic solutions are considered. The characteristics of the forbidden gap are studied as a function of the ribbon length. For a 7-AGNR, the gap monotonically decreases from a maximum value of ~6.5 eV for short nanoribbons to a very small value of ~0.12 eV for the longer calculated systems. Gap edges are defined by molecular orbitals that are spatially localized near the nanoribbon extremes, that is, near both zig-zag edges. On the other hand, two delocalized orbitals define a much larger gap of about 5 eV. Conductance measurements report a somewhat smaller gap of ~3 eV. The small real gap lies in the middle of the one given by extended states and has been observed by STM and reproduced by DFT calculations. On the other hand, the length dependence of the gap is not monotonous for a 13-AGNR. It decreases initially but sharply increases for lengths beyond 30 Å remaining almost constant thereafter at a value of ~2.1 eV. Two additional states localized at the nanoribbon extremes show up at energies 0.31 eV below the HOMO (Highest Occupied Molecular Orbital) and above the LUMO (Lowest Unoccupied Molecular Orbital). These numbers compare favorably with those recently obtained by means of STS for a 13-AGNR sustained by a gold surface, namely 1.4 eV for the energy gap and 0.4 eV for the position of localized band edges. We show that the important differences between 7- and 13-AGNR should be ascribed to the charge rearrangement near the zig-zag edges obtained in our calculations for ribbons longer than 30 Å, a feature that does not show up for a 7-AGNR no matter its length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese oxide is a promising active material for supercapacitors (SCs) with pseudocapacitance due to its high capacitance and its environmentally friendly character. This paper deals with the preparation of electrodes for supercapacitors consisting of manganese oxide supported onto graphite by electrophoretic deposition. Manganese oxide powders were characterized and dispersed in water by controlling the colloidal and rheological behavior in order to obtain stable suspensions. Optimized manganese oxide suspensions were deposited onto graphite electrodes by electrophoretic deposition. The deposited mass per unit area in the electrodes was optimized by controlling the applied current density and the deposition time. It has been demonstrated that the introduction of a binder helped to improve the adherence to graphite; otherwise the deposit thickness obtained by EPD is limited and no films can be obtained by simply dipping. These conditions allowed us to obtain more homogeneous deposits with higher specific energy than without binder.