960 resultados para 3 Models
Resumo:
The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.
Resumo:
Contém resumo
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.
Resumo:
AbstractBackground:30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.Objective:This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).Methods:Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves.Results:The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction < 25% and use of high doses of diuretics (HDD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.Conclusion:We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.
Resumo:
BACKGROUND: Even if a large proportion of physiotherapists work in the private sector worldwide, very little is known of the organizations within which they practice. Such knowledge is important to help understand contexts of practice and how they influence the quality of services and patient outcomes. The purpose of this study was to: 1) describe characteristics of organizations where physiotherapists practice in the private sector, and 2) explore the existence of a taxonomy of organizational models. METHODS: This was a cross-sectional quantitative survey of 236 randomly-selected physiotherapists. Participants completed a purpose-designed questionnaire online or by telephone, covering organizational vision, resources, structures and practices. Organizational characteristics were analyzed descriptively, while organizational models were identified by multiple correspondence analyses. RESULTS: Most organizations were for-profit (93.2%), located in urban areas (91.5%), and within buildings containing multiple businesses/organizations (76.7%). The majority included multiple providers (89.8%) from diverse professions, mainly physiotherapy assistants (68.7%), massage therapists (67.3%) and osteopaths (50.2%). Four organizational models were identified: 1) solo practice, 2) middle-scale multiprovider, 3) large-scale multiprovider and 4) mixed. CONCLUSIONS: The results of this study provide a detailed description of the organizations where physiotherapists practice, and highlight the importance of human resources in differentiating organizational models. Further research examining the influences of these organizational characteristics and models on outcomes such as physiotherapists' professional practices and patient outcomes are needed.
Resumo:
The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. In the present paper we propose more general STAR transition functions which encompass both threshold nonlinearity and asymmetric e¤ects. Our framework allows for a gradual adjustment from one regime to another, and considers threshold e¤ects by encompassing other existing models, such as TAR models. We apply our methodology to three di¤erent exchange rate data-sets, one for developing countries, and o¢ cial nominal exchange rates, the sec- ond emerging market economies using black market exchange rates and the third for OECD economies.
Resumo:
The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. The present is a technical Appendix to Cerrato et al. (2009) and presents detailed simulations of the proposed methodology and additional empirical results.
Resumo:
1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.