980 resultados para 240401 Optics and Opto-electronic Physics
Resumo:
The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.
Resumo:
The anharmonic, multi-phonon (MP), and Oebye-Waller factor (OW) contributions to the phonon limited resistivity (;0) of metals derived by Shukla and Muller (1979) by the doubletime temperature dependent Green function method have been numerically evaluated for Na and K in the high temperature limit. The anharmonic contributions arise from the cubic and quartic shift of phonons (CS, QS), and phonon width (W) and the interference term (1). The QS, MP and OW contributions to I' are also derived by the matrix element method and the results are in agreement with those of Shukla and Muller (1979). In the high temperature limit, the contributions to;O from each of the above mentioned terms are of the type BT2 For numerical calculations suitable expressions are derived for the anharmonic contributions to ~ in terms of the third and fourth rank tensors obtained by the Ewald procedure. The numerical calculation of the contributions to;O from the OW, MP term and the QS have been done exactly and from the CS, Wand I terms only approximately in the partial and total Einstein approximations (PEA, TEA), using a first principle approach (Shukla and Taylor (1976)). The results obtained indicate that there is a strong pairwise cancellation between the: OW and MP terms, the QS and CS and the Wand I terms. The sum total of these contributions to;O for Na and K amounts to 4 to 11% and 2 to 7%, respectively, in the PEA while in the TEA they amount to 3 to 7% and 1 to 4%, respectively, in the temperature range.
Resumo:
We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.
Resumo:
Martin Heidegger's interpretation of the ancients was born out of something like a crisis in the interpretation of the Greeks, which can be characterized as nothing other than the realization of the idea that the Greek philosophers put a serious question mark over existence. This idea, which had its germination in Prussia with Jakob Burckhart and his teacher, but first came to be seriously cultivated in the Philosophy of Friedrich Nietzsche, was the first in depth investigation into whether the Greeks, on the one hand, questioned existence or, on the other hand, put a question mark over existence. To question existence is rather innocuous, since it amounts to little more, in the end, than a child looking up at the stars and asking what it all means. To put a question mark over existence, however, is another business entirely. For the Greeks, as the life work of Martin Heidegger amply demonstrates, the nature of Greek thinking and the objects towards which it is directed follows so absolutely from the tragic view of the human person that, in a certain sense, philosophy is Greek and could only have developed in Greece. Perhaps stating it a little less categorically, philosophy could have developed elsewhere at least to the extent that something like they way the Greeks understood life was at the forefront: presence, in other words. This thesis deals with the problem ofHeidegger's relation to the Greeks, specifically in terms of his understanding of the Greeks and presence. It is the position of this dissertation that the Greek notion of presence is, as Heidegger understands it, the homeliness of the hearth that radiates through all the things that humans concern themselves with. This is thought by Heidegger, as the Greeks did, specifically in contrast with the uncanninesslunhomeliness of the hqrnan apart from his or her concern with things. Therefore, the thesis is an attempt at exposing the relation between presence and the unhomely by situating it withing Greek existence and the meaning of the Greek Philosopher. In order to support this position, the thesis has been divided into five parts. The first two chapters deal with Heidegger's explanation of the relation between Greek notion of physics (Phusis), metaphysics (specifically in relation to an analysis of time and motion in Greek thought), and what Heidegger calls the fundamental attunement of Dasein (boredom). More exactly, it deals with these issues only so far as they allow us to bring out something like the notion of 'presence' in relation to things and homelessness or restlessness in relation to the human being. The rationale for these two chapters in relation to the central problem of the paper is that in Heidegger's elucidation of physics and metaphysics, he conducts his analysis in such a way that he explicitly uncovers that dimension of human existence that he calls the fundamental attunement of Dasein. This fundamental attunement is, in tum, similar to what the Greeks understood as the deinon, the uncanninesslunhomeliness of the human. The third and fourth chapters take as their explicit themes the problem of the Greek understanding of the assertion and the ways in which the person can comport himlherself toward things, two issues which are not separable. The rationale for these two chapters in relation to the central theme of the paper is that Heidegger's analysis of these two areas in Greek thought brings out precisely why the philosopher and the philosophical way of life is the highest mode of existence for the Greeks and how this is thought specifically in tenns of the uncanniness of humans. The final cijapter gives a complete elucidation of presence as the homeliness of the hearth and shows specifically how this is thought of in contradistinction to the uncanny/unhomely for the Greeks. 1I1 This last chapter also explains Martin Heidegger's reaction to the Greek's interpretation of the highest mode of existence, and what he posited as a counter-thought. The essay as a whole is an attempt to fully concertize an important dimension of Heidegger' s understanding of the Greeks, that is, the relation between presence and the deinon or Greek notion ofunhomely, which, to my la)owledge, has not been offered anywhere in commentaries on Heidegger.
Resumo:
Purple bronze Li0.9Mo6O17 has attracted researchers for its low dimensionality and corresponding properties. Although it has been studied for nearly two decades, there are still some unsolved puzzles with this unique material. Single crystals of Li0.9Mo6O17 were grown using the temperature gradient flux technique in this research. The crystal growth was optimized by experimenting different conditions and good quality crystals were obtained. X-ray diffraction results have confirmed the right phase of the crystals. Resistivity measurements and magnetic susceptibility measurements were carried out, and anomalous electronic behaviors were found. All of the samples showed the metal-insulator transition near 20K, followed by behavior that differs from sample to sample: either superconducting, metallic or insulating behavior was observed below 2K. Li0.9Mo6O17 was considered as a quasi-one-dimensional crystal and also a superconducting crystal, which implies a dimensional crossover may occur at the metal-insulator transition. A two-band scenario of the Luttinger liquid model was used to fit the resistivity data and excellent results were achieved, suggesting that the Luttinger theory is a very good candidate for the explanation of the anomalous behavior of Li0.9Mo6O17. In addition, the susceptibility measurements showed Curie paramagnetism and some temperature independent paramagnetism at low temperature. The absence of any anomalous magnetic feature near 20K where the resistivity upturn takes place, suggests that a charge density wave mechanism, which has been proposed by some researchers, is not responsible for the unique properties of Li0.9Mo6O17.
Resumo:
La thèse est divisée en deux parties, soit le texte principal et les annexes afin d'alléger la taille des documents.
Resumo:
This Thesis discussed molecules suitable for photorefractive effect. Out of the molecules studied, only one system was used to make photorefractive polymers system. Other molecules, especially, the electro-optic polymer, Poly(3-methacrloyl-1-(4'-nitro-4-azo-1'-phenyl)phenylalanine-co- methyl methacrylate) can be subjected to more detailed studies to explore the possibilities of using them for electro-optic applications. Though not included in the thesis, the efficient photoconductor, Poly(6-tert-butyl-3- phenyl-3,4-dihydro-2H-1,3-benzoxazine) sensitized with C60, which was described in Chapter 3 showed a low magnitude photovoltaic effect. This hints at the possibility of using this system for organic solar cells also. The thesis presented the initial observation of photorefractive effect in a polybenzoxazine based polymer system. A detailed analysis of the effect of C60, ECZ and DR1 can be carried out to check for the possibility of a high efficiency photorefractive system.
Resumo:
Dual-beam transient thermal lens studies were carried out in aqueous solutions of rhodamine 6G using 532 nm pulses from a frequency-doubled Nd:YAG laser. The analysis of the observed data showed that the thermal lens method can effectively be utilized to study the nonlinear absorption and aggregation which are taking place in a dye medium.
Resumo:
This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.
Resumo:
An immense variety of problems in theoretical physics are of the non-linear type. Non~linear partial differential equations (NPDE) have almost become the rule rather than an exception in diverse branches of physics such as fluid mechanics, field theory, particle physics, statistical physics and optics, and the construction of exact solutions of these equations constitutes one of the most vigorous activities in theoretical physics today. The thesis entitled ‘Some Non-linear Problems in Theoretical Physics’ addresses various aspects of this problem at the classical level. For obtaining exact solutions we have used mathematical tools like the bilinear operator method, base equation technique and similarity method with emphasis on its group theoretical aspects. The thesis deals with certain methods of finding exact solutions of a number of non-linear partial differential equations of importance to theoretical physics. Some of these new solutions are of relevance from the applications point of view in diverse branches such as elementary particle physics, field theory, solid state physics and non-linear optics and give some insight into the stable or unstable behavior of dynamical Systems The thesis consists of six chapters.
Resumo:
Over the past years there has been considerable interest in the growth of single crystals both from the point of view of basic research and technological application. With the revolutionary emergence of solid state electronics which is based on single crystal technolo8Ys basic and applied studies on crystal growth and characterization _have gained a-more significant role in material science. These studies are being carried out for single crystals not only of semiconductor and other electronic materials but also of metals and insulators. Many organic crystals belonging to the orthorhombic class exhibit ferroelectric, electrooptic, triboluminescent and piezoelectric properties. Diammonium Hydrogen Citrate (DAHC) crystals are reported to be piezoelectric and triboluminescent /1/. Koptsik et al. /2/ have reported the piezoelectric nature of Citric Acid Monohydrate (CA) crystals. And since not much work has been done on these crystals, it has been thought useful to grow and characterize these crystals. This thesis presents a study of the growth of these crystals from solution and their defect structures. The results of the microindentation and thermal analysis are presented. Dielectric, fractographic, infrared (IR) and ultraviolet (UV) studies of DAHC crystals are also reported
Resumo:
Photoluminescence (PL) spectroscopy is an optical technique that has emerged successful in the field of semiconductor material and device characterization. This technique is quite a powerful one which gives idea about the defect levels in a material, the band gap of the material, composition as well as material quality. Over the recent years it has received an elevation as a mainstream characterization technique. This thesis is an attempt to characterize each individual layer used in a thin film solar cell with special focus on the electrical properties. This will be highly beneficial from the lab as well as industrial point of view because electrical measurements generally are contact mode measurements which tend to damage the surface. As far as a thin film solar cell is concerned, the constituent layers are the transparent conducting oxide (TCO), absorber layer, buffer layer and top electrode contact. Each layer has a specific role to play and the performance of a solar cell is decided and limited by the quality of each individual layer. Various aspects of PL spectroscopy have been employed for studying compound semiconductor thin films [deposited using chemical spray pyrolysis (CSP)] proposed for solar cell application. This thesis has been structured in to seven chapters
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.